Case studies of OpenMP \& MPI

Matthias Möller
Department of Applied Mathematics
Delft University of Technology, The Netherlands

Joint work with Hugo Verhelst \& Roel Tielen

TUDelft

About

- Diploma in Mathematics from TU Dortmund, DE (2003)
- PhD in Mathematics from TU Dortmund, DE (2008)
- Associate Professor of Numerical Analysis, TU Delft

Research interests

- Numerical simulations and optimization of PDE problems
- Quantum computing and high-performance computing
- Scientific machine learning

Today's talk

- Case studies of using OpenMP / MPI
- Brute-force QUBO sampler
- Parallel-in-time method in G+Smo
- Parallel Arc-Length method in G+Smo

Brute-force QUBO sampler

- Problem: Given a symmetric real-valued matrix $\mathbf{Q} \in \mathbb{R}^{n \times n}$ find a bit string $\mathbf{x} \in\{0,1\}^{n}$ such that

$$
\begin{gathered}
\mathbf{x}^{*}=\operatorname{minarg}_{\mathbf{x} \in\{0,1\}^{n}} \mathbf{x}^{\top} \mathbf{Q} \mathbf{x} \text { or } \\
e^{*}=\min _{\mathbf{x} \in\{0,1\}^{n}} \mathbf{x}^{\top} \mathbf{Q} \mathbf{x}
\end{gathered}
$$

- Challenge: There are 2^{n} different bit strings that need to be tested to find the global minimum
- Approach: Quantum annealers (D-Wave) are designed to solve this problem efficiently.

However, for developing QUBO formulations we need an efficient brute-force sampler that can produce the full energy landscape efficiently.

Brute-force QUBO sampler

- Data structures:
- H : histogram $\left(E_{\min }, E_{\text {max }}, N_{\text {bins }}\right)$
- S : array of $N_{\text {best }}$ samples
- Sequential algorithm:
- For $i=0, \ldots, 2^{n}-1$
- create $\mathbf{x}_{i} \in\{0,1\}^{n}$ and compute $e_{i}=\mathbf{x}_{i}^{\top} \mathbf{Q} \mathbf{x}_{i}$
- increment the counter of the corresponding
 "energy bin" by one and insert e_{i} into array of best samples if appropriate (sorting!)

Implementation details

- C++20 compute kernel with PyBind11 wrapper
- Linear algebra library
- Q: Eigen::SparseMatrix<T, Eigen::ColMajor> or Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>
- \mathbf{x} : Eigen::Vector<T, Eigen::Dynamic>
- MPI parallelization
- Each rank has its own histogram H and array S, computes

T energy $=\left(x . c w i s e P r o d u c t\left(Q^{*} x\right)\right)$. colwise().sum()[0];
and updates H and potentially S

Implementation details

```
struct Histogram {
    Histogram(...) {...}
    std::vector<std::size_t> bins;
    std::vector<double> values;
};
// reduce global histogram from all MPI processes
Histogram global_hist(binCount, minValue, maxValue);
MPI_Allreduce(hist.bins.data(), global_hist.bins.data(),
    binCount, MPI_UNSIGNED_LONG_LONG, MPI_SUM, MPI_COMM_WORLD);
// we don't have to allreduce hist.values because they are the same for all
// copies and are set by the constructor
```


Implementation details

```
struct Samples {
    Samples(...) {...}
    std::vector<std::pair<double, std::size_t>> samples;
};
MPI_Aint baseaddr, addr, displacement[2];
MPI_Get_address (&samples.samples.data()->first, &baseaddr);
MPI_Get_address (&samples.samples.data()->second, &addr);
displacement[0] = 0; displacement[1] = addr - baseaddr;
MPI_Datatype datatype[2];
datatype[0] = MPI_DOUBLE; datatype[1] = MPI_UNSIGNED_LONG_LONG;
int blocklength[2]; blocklength[0] = 1; blocklength[1] = 1;
MPI_Datatype MPI_PAIR;
MPI_Type_create_struct(2, blocklength, displacement, datatype, &MPI_PAIR);
MPI_Type_commit(&MPI_PAIR);
```


Implementation details

```
// reduce samples from all MPI processes
Samples global_samples(nprocs * nsamples);
MPI_Allgather(samples.samples.data(), nsamples, MPI_PAIR,
    global_samples.samples.data(), nsamples, MPI_PAIR, MPI_COMM_WORLD);
// sort and resize samples from all MPI processes
std::sort(global_samples.samples.begin(), global_samples.samples.end(),
    [](const auto& lhs, const auto& rhs)
    { return lhs.first < rhs.first; });
while (global_samples.samples.size() > nsamples)
    global_samples.samples.pop_back();
```


Scalability: $\mathrm{N}=26,67.108 .864$ bit strings, 15% fill

MPI	Runtime	Parallel runtime
1	19.57	19.57
2	$7.61-9.52$	18.95
4	$3.80-4.75$	18.70
8	$1.89-2.37$	18.24
16	$0.94-1.20$	17.58
32	$0.47-0.60$	17.31
64	$0.23-0.24$	19.55
128	$0.11-0.13$	54.72
192	$0.11-0.12$	45.55

Python kills performance

- Long startup times (import)
- GIL hinders effective OpenMP

Lessons learned

- Close to optimal scaling up to 128 cores per node for compute-bound nearly data-less problem
- User-defined MPI datatypes can be used to perform MPI operations on C++ datatypes
- DON'T USE PYTHON FOR PARALLEL PROGRAMMING

Not discussed here

- Since the QUBO matrix is the same for all processes, we implemented a MPI+OpenMP variant with 1-2 MPI process(es) per node and multiple OpenMP threads per MPI process (user-defined OpenMP reduction, atomic updates of H and S). Works outside Python but is limited by GIL.

G+Smo - Geometry plus Simulation Modules

- Open-source (MLP-2.0) isogeometric analysis library written in C++11 on top of the Eigen library
- Developers \& users: Inria, TU Delft, JKU, RICAM, UoFlorence, MTU AeroEngines, Vtech CMCC, ...
- Features:
- OpenMP parallelization (WIP), MPI parallelization (demonstrator apps + external libraries)
- Wrappers for Python (PyBind11), Julia (WIP), Matlab (WIP)
- External libraries: OpenNurbs, Pardiso, Trilions, Spectra, CoDiPack, ...
- Import/export formats: XML, VTK, 3dm, ...

Typical applications

- Geometric modelling with adaptive splines
- Simulation of linear/nonlinear PDE problems
- PDE-constrained shape/topology optimization

Sequential time integrators

- Model problem

$$
\frac{d u(t)}{d t}=A(u(t), t), \quad u(t=0)=u^{0}
$$

- Explicit time integrators

$$
\frac{u^{n+1}-u^{n}}{\Delta t}=A\left(u^{n}, t^{n}\right) \quad \Rightarrow \quad u^{n+1}=u^{n}+\Delta t A\left(u^{n}, t^{n}\right), \quad u^{n}:=u\left(t^{n}\right)
$$

- Implicit time integrators

$$
\frac{u^{n+1}-u^{n}}{\Delta t}=A\left(u^{n+1}, t^{n+1}\right) \quad \Rightarrow \quad u^{n+1}-\Delta t A\left(u^{n+1}, t^{n+1}\right)=u^{n}
$$

Parallel-in-time integrators

Sketch of the parallel-in-time algorithm

- Writing out the two-level time integration scheme $\left[M+\Delta t_{F} K\right] u^{n+1}=M u^{n}+f$ for all time levels yields

$$
\left[\begin{array}{cccc}
I & & & \\
-\Psi M & I & & \\
& \ddots & \ddots & \\
& & -\Psi M & I
\end{array}\right]\left[\begin{array}{c}
u^{0} \\
u^{1} \\
\vdots \\
u^{N}
\end{array}\right]=\Delta t_{F}\left[\begin{array}{c}
\Psi f \\
\Psi f \\
\vdots \\
\Psi f
\end{array}\right] \quad \text { with } \quad \Psi=\left[M+\Delta t_{F} K\right]^{-1}
$$

- Reordering of the system matrix (and the vectors!) into Fine and Coarse time levels yields

$$
\left[\begin{array}{cc}
A_{F F} & A_{F C} \\
A_{C F} & A_{C C}
\end{array}\right]=\left[\begin{array}{cc}
I_{F} & 0 \\
A_{C F} A_{F F}^{-1} & I_{C}
\end{array}\right]\left[\begin{array}{cc}
A_{F F} & 0 \\
0 & S
\end{array}\right]\left[\begin{array}{cc}
I_{F} & A_{F F}^{-1} A_{F C} \\
0 & I_{C}
\end{array}\right] \quad \text { with } \quad S=A_{C C}-A_{C F} A_{F F}^{-1} A_{F C}
$$

Sketch of the parallel-in-time algorithm

- Approximation of the Schur complement matrix

$$
S=\left[\begin{array}{ccccc}
I & & & \\
-(\Psi M)^{m} & I & & \\
& \ddots & \ddots & \\
& & -(\Psi M)^{m} & I
\end{array}\right] \approx\left[\begin{array}{cccc}
I & & & \\
-\Phi M & I & & \\
& \ddots & \ddots & \\
& & -\Phi M & I
\end{array}\right]
$$

- Approximate coarse integrator

$$
\Phi=\left[M+\Delta t_{C} K\right]^{-1}
$$

- Repeat this two-level recursion to obtain MGRIT (multi-grid-in-time)

Strong scaling

- 2d heat equation with $h=2^{-6}$ spatial resolution solved for $N_{t}=10.000$ time steps using the backward Euler scheme and IGA discretisation on 128 Xeon Gold 6130 CPUs (2.10GHz, 96GB, 16 cores)

Weak scaling

- 2d heat equation with $h=2^{-6}$ spatial resolution solved for $N_{t}=\#$ cores/64 $\cdot 1.000$ time steps using the backward Euler scheme and IGA discretisation on 128 Xeon Gold 6130 CPUs (2.10GHz, 96GB, 16 cores)

Lessons learned

- Sequential processes like time integration can be parallelised using parallel-in-time methods
- Sufficient number of MPI processes is required to compensate the computational/mathematical overhead
- Rest of the math (and implementation) needs to be right as well
- Large Δt_{C} lead to unstable explicit integrators \Rightarrow use (semi-)implicit time integrators
- Stationary problems need to be solved efficiently (PhD Thesis by Roel Tielen)
- It's very difficult to utilise many-core CPUs efficiently for memory-bound problems

Snapping meta-material simulation

Arc-length method (ALM)

- Nonlinear system of equations

$$
\mathbf{G}(\mathbf{u}, \lambda)=\mathbf{N}(\mathbf{u})-\lambda \mathbf{P}=\mathbf{0}
$$

- \mathbf{u} is the displacement vector computed by some PDE problem
- $\mathbf{N}(\mathbf{u})$ is the vector of internal forces depending on \mathbf{u}
- λ is a scaling factor for the applied load \mathbf{P}
- Task: find the load-response curve $\{(\mathbf{u}, \lambda): \mathbf{G}(\mathbf{u}, \lambda)=\mathbf{0}\}$
- Challenges: bifurcation points, convergence problems, find the full load-response path not a set of discrete points, ...

Sequential ALM

- Start with $\mathbf{w}_{0}:=\left(\mathbf{u}_{0}, \lambda_{0}\right)$ such that $\mathbf{G}\left(\mathbf{w}_{0}\right)=\mathbf{0}$ and compute the next increment $\Delta \mathbf{w}_{i}=\left(\Delta \mathbf{u}_{i}, \Delta \lambda_{i}\right)$ such that $\mathbf{G}\left(\mathbf{w}_{i+1}=\mathbf{w}_{i}+\Delta \mathbf{w}_{i}\right)=\mathbf{0}$ by solving the nonlinear problem using Newton's method (for $i=1,2, \ldots$)
- Scenario's
- Load control: fix λ and compute \mathbf{u}
- Displacement control: fix \mathbf{u} and compute λ

- Arc-length control: fix $\Delta \ell$ and compute λ and \mathbf{u} simultaneously such that

$$
f(\Delta \mathbf{u}, \Delta \lambda)=\Delta \mathbf{u}^{\top} \Delta \mathbf{u}+\Psi^{2} \Delta \lambda^{2} \mathbf{P}^{\top} \mathbf{P}-\Delta \ell=0
$$

Adaptive parallel ALM

Adaptive parallel ALM

 S

Parallel verification of subintervals
Curve-length reparameterization

Implementation details

- Manager (MPI rank 0)
- Performs sequential initialisation (relaxed in the fully parallel APALM method)
- Checks convergence criteria and sends 'kill command'
- Pool of workers (MPI ranks 1...N)
- Query global queue with complete 'job description' (problem configuration + initial guess)
- Remove first job from queue, perform computation, add result to output list, perform validation, and add new (refined) jobs to the global job queue if needed
- Terminate on "kill command"

Example: collapse of a shallow roof

- Isogeometric Kirchhoff-Love shell model (gsKLShell extension)
- 4×4 NURBS elements of degree 3

Example: collapse of a shallow roof

- DelftBlue: Intel Xeon Gold 6248R, 24 cores @ 3.0 GHz
(a) $\Delta L=30$

Workers	ASPALM			APALM
	Serial + Parallel $=$ Total		Parallel	
0	115.7	195.3	311.1	287.1
1	119.2	209.0	328.2	318.8
2	114.0	100.8	214.8	162.4
4	109.5	46.1	155.6	115.8
8	115.0	27.0	142.1	115.9
16	115.1	17.8	132.9	116.3
32	114.9	15.9	130.8	113.0
64	114.5	13.3	127.8	116.0

(b) $\Delta L=2.5$

Workers $\#$	ASPALM			APALM
	Serial + Parallel $=$ Total		Parallel	
0	507.2	$1,778.1$	$2,285.3$	$2,187.1$
1	500.5	$1,757.7$	$2,258.2$	$2,310.2$
2	447.5	835.3	$1,282.9$	$1,114.0$
4	493.4	449.4	942.8	558.1
8	496.8	223.2	720.0	453.9
16	503.3	113.0	616.2	483.6
32	493.2	58.1	551.3	510.9
64	504.2	29.2	533.4	498.3
128	501.0	20.2	521.3	494.7
256	505.5	18.8	524.3	509.6

Example: snapping meta-material

- Compressible Neo-Hookean material model
- 132 B-spline patches and 16.563 dofs in total

(b) The snapping building block, composed of 15 patches outlines in black.
(a) A snapping meta-material with 3×2.5 building blocks, of which one is outlined. The total multi-patch consists of 132 patche

Example: snapping meta-material

- DelftBlue: Intel Xeon Gold 6248R, 24 cores @ 3.0 GHz

Workers $\#$	ASPALM			APALM
	Serial	+ Parallel $=$ Total	Parallel	
0	$1,571.6$	$5,204.8$	$6,776.4$	$7,022.9$
1	$1,686.9$	$4,593.2$	$6,280.1$	$5,319.1$
2	$1,237.5$	$3,005.9$	$4,243.4$	$3,827.9$
4	$1,742.7$	$1,548.2$	$3,290.9$	$2,137.3$
8	$1,445.4$	717.4	$2,162.8$	$1,711.8$
16	$1,931.1$	352.2	$2,283.3$	$1,632.9$
32	$1,746.9$	219.7	$1,966.6$	$1,755.6$

Lessons learned

- MPI can be used for "task-based" dynamic parallelisation based on a task queue
- The code was parallelised via OpenMP (assembly, solve, etc.) so that the number of MPI processes per compute node was chosen to be smaller (e.g., 1-4) than the total number of compute cores so that each MPI process could solve the problem instance with 6-8 OpenMP threads

