
Case studies of OpenMP & MPI

Matthias Möller
Department of Applied Mathematics

Delft University of Technology, The Netherlands

Joint work with Hugo Verhelst & Roel Tielen

About

■ Diploma in Mathematics from TU Dortmund, DE (2003)

■ PhD in Mathematics from TU Dortmund, DE (2008)

■ Associate Professor of Numerical Analysis, TU Delft

Research interests

■ Numerical simulations and optimization of PDE problems

■ Quantum computing and high-performance computing

■ Scientific machine learning

Today’s talk

■ Case studies of using OpenMP / MPI

• Brute-force QUBO sampler

• Parallel-in-time method in G+Smo

• Parallel Arc-Length method in G+Smo

Brute-force QUBO sampler

■ Problem: Given a symmetric real-valued matrix
 find a bit string such that

 or

■ Challenge: There are different bit strings that
need to be tested to find the global minimum

■ Approach: Quantum annealers (D-Wave) are
designed to solve this problem efficiently.

However, for developing QUBO formulations we
need an efficient brute-force sampler that can
produce the full energy landscape efficiently.

Q ∈ ℝn×n x ∈ {0,1}n

x* = minargx∈{0,1}n x⊤Qx
e* = minx∈{0,1}n x⊤Qx

2n

Brute-force QUBO sampler

■ Data structures:

• : histogram()

• : array of samples

■ Sequential algorithm:

• For

• create and compute

• increment the counter of the corresponding
“energy bin” by one and insert into array of
best samples if appropriate (sorting!)

H Emin, Emax, Nbins

S Nbest

i = 0,…,2n − 1

xi ∈ {0,1}n ei = x⊤
i Qxi

ei

Implementation details

■ C++20 compute kernel with PyBind11 wrapper

■ Linear algebra library

• : Eigen::SparseMatrix<T, Eigen::ColMajor> or
 Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>

• : Eigen::Vector<T, Eigen::Dynamic>

■ MPI parallelization

• Each rank has its own histogram and array , computes

T energy = (x.cwiseProduct(Q*x)).colwise().sum()[0];

and updates and potentially

Q

x

H S

H S

Implementation details

struct Histogram {
 Histogram(…) {…}
 std::vector<std::size_t> bins;
 std::vector<double> values;
};

// reduce global histogram from all MPI processes
Histogram global_hist(binCount, minValue, maxValue);
MPI_Allreduce(hist.bins.data(), global_hist.bins.data(),
 binCount, MPI_UNSIGNED_LONG_LONG, MPI_SUM, MPI_COMM_WORLD);

// we don’t have to allreduce hist.values because they are the same for all
// copies and are set by the constructor

Implementation details

struct Samples {
 Samples(…) {…}
 std::vector<std::pair<double, std::size_t>> samples;
};

MPI_Aint baseaddr, addr, displacement[2];
MPI_Get_address (&samples.samples.data()->first, &baseaddr);
MPI_Get_address (&samples.samples.data()->second, &addr);
displacement[0] = 0; displacement[1] = addr - baseaddr;

MPI_Datatype datatype[2];
datatype[0] = MPI_DOUBLE; datatype[1] = MPI_UNSIGNED_LONG_LONG;

int blocklength[2]; blocklength[0] = 1; blocklength[1] = 1;

MPI_Datatype MPI_PAIR;
MPI_Type_create_struct(2, blocklength, displacement, datatype, &MPI_PAIR);
MPI_Type_commit(&MPI_PAIR);

Implementation details

// reduce samples from all MPI processes
Samples global_samples(nprocs * nsamples);
MPI_Allgather(samples.samples.data(), nsamples, MPI_PAIR,
 global_samples.samples.data(), nsamples, MPI_PAIR, MPI_COMM_WORLD);

// sort and resize samples from all MPI processes
std::sort(global_samples.samples.begin(), global_samples.samples.end(),
 [](const auto& lhs, const auto& rhs)
 { return lhs.first < rhs.first; });

while (global_samples.samples.size() > nsamples)
 global_samples.samples.pop_back();

Scalability: N=26, 67.108.864 bit strings, 15% fill

MPI Runtime Parallel runtime

1 19.57 19.57

2 7.61 - 9.52 18.95

4 3.80 - 4.75 18.70

8 1.89 - 2.37 18.24

16 0.94 - 1.20 17.58

32 0.47 - 0.60 17.31

64 0.23 - 0.24 19.55

128 0.11 - 0.13 54.72

192 0.11 - 0.12 45.55

Python kills performance

■ Long startup times (import)

■ GIL hinders effective OpenMP

Lessons learned

■ Close to optimal scaling up to 128 cores per node for compute-bound nearly data-less problem

■ User-defined MPI datatypes can be used to perform MPI operations on C++ datatypes

■ DON’T USE PYTHON FOR PARALLEL PROGRAMMING

Not discussed here

■ Since the QUBO matrix is the same for all processes, we implemented a MPI+OpenMP variant with 1-2
MPI process(es) per node and multiple OpenMP threads per MPI process (user-defined OpenMP
reduction, atomic updates of and). Works outside Python but is limited by GIL.H S

G+Smo - Geometry plus Simulation Modules

■ Open-source (MLP-2.0) isogeometric analysis library written in C++11 on top of the Eigen library

■ Developers & users: Inria, TU Delft, JKU, RICAM, UoFlorence, MTU AeroEngines, Vtech CMCC, …

■ Features:

• OpenMP parallelization (WIP), MPI parallelization (demonstrator apps + external libraries)

• Wrappers for Python (PyBind11), Julia (WIP), Matlab (WIP)

• External libraries: OpenNurbs, Pardiso, Trilions, Spectra, CoDiPack, …

• Import/export formats: XML, VTK, 3dm, …

Typical applications

■ Geometric modelling with adaptive splines

■ Simulation of linear/nonlinear PDE problems

■ PDE-constrained shape/topology optimization

Sequential time integrators

■ Model problem

■ Explicit time integrators

■ Implicit time integrators

du(t)
dt

= A(u(t), t), u(t = 0) = u0

un+1 − un

Δt
= A(un, tn) ⇒ un+1 = un + ΔtA(un, tn), un := u(tn)

un+1 − un

Δt
= A(un+1, tn+1) ⇒ un+1 − ΔtA(un+1, tn+1) = un

Parallel-in-time integrators
Part II: Multigrid reduction in time (MGRIT)

T0 T1 · · · TNt/m

t0 t1 · · · tm tNt�tF

�tC = m�tF

0 2 4 6 8 10

1

2

3

Time

So
lu

tio
n

0 2 4 6 8 10

1

2

3

Time

S. Friedho�, et al. A Multigrid-in-Time Algorithm for Solving Evolution Equations in Parallel, 16th

Copper Mountain Conference on Multigrid Methods 2013.
31 / 46

S. Friedhoff, et al. A Multigrid-in-Time Algorithm for Solving Evolution Equations in Parallel, 16th Copper Mountain Conference on Multigrid Methods 2013.

Sketch of the parallel-in-time algorithm

■ Writing out the two-level time integration scheme for all time levels yields

■ Reordering of the system matrix (and the vectors!) into ine and oarse time levels yields

[M + ΔtFK]un+1 = Mun + f

I
−ΨM I

⋱ ⋱
−ΨM I

u0

u1

⋮
uN

= ΔtF

Ψf
Ψf
⋮

Ψf

with Ψ = [M + ΔtFK]−1

F C

[AFF AFC

ACF ACC] = [
IF 0

ACFA−1
FF IC] [AFF 0

0 S] [IF A−1
FFAFC

0 IC] with S = ACC − ACFA−1
FFAFC

S. Friedhoff, et al. A Multigrid-in-Time Algorithm for Solving Evolution Equations in Parallel, 16th Copper Mountain Conference on Multigrid Methods 2013.

Sketch of the parallel-in-time algorithm

■ Approximation of the Schur complement matrix

■ Approximate coarse integrator

■ Repeat this two-level recursion to obtain MGRIT (multi-grid-in-time)

S =

I
−(ΨM)m I

⋱ ⋱
−(ΨM)m I

≈
I

−ΦM I
⋱ ⋱

−ΦM I

Φ = [M + ΔtC K]−1

S. Friedhoff, et al. A Multigrid-in-Time Algorithm for Solving Evolution Equations in Parallel, 16th Copper Mountain Conference on Multigrid Methods 2013.

The MGRIT-IGA V-cycle

l = 0 �t

l = 1 �tm

l = 2 �tm2

l = 3 �tm3

l = 4 �tm4

relaxation exact solve restriction interpolation

35 / 46

Strong scaling

■ 2d heat equation with spatial resolution solved for time steps using the backward
Euler scheme and IGA discretisation on 128 Xeon Gold 6130 CPUs (2.10GHz, 96GB, 16 cores)

h = 2−6 Nt = 10.000Numerical examples: Strong scaling of MGRIT-IGA

#5: Heat-Eq with h = 2≠6 spatial resolution solved for Nt = 10.000 time steps with
backward Euler method on 128 Xeon Gold 6130 CPUs (2.10GHz, 96GB, 16 cores)

100

101

102

103

104

99
1

1,
07

7

1,
38

9

1,
86

4

59
8

66
3 85

1 1,
08

5

39
8

44
1 54
5 68

1

21
4

24
1 29
0 37

3

11
4

12
9 15
7 20

1

61 70 83 10
6

41
5

46
0 56
2 69
6

CP
U

tim
es

64 cores

128 cores

256 cores

512 cores

1024 cores

2048 cores

sequential

p = 2 p = 3 p = 4 p = 5

R. Tielen, M. Möller, and C. Vuik (2022) Combining p-multigrid and multigrid reduction in time
methods to obtain a scalable solver for isogeometric analysis, SN Appl. Sci. 410.1007/s42452-022-05043-7.

37 / 46R. Tielen, M. Möller, and C. Vuik (2022) Combining p-multigrid and multigrid reduction in time methods to obtain a scalable solver for isogeometric analysis, SN Appl. Sci. 4

Weak scaling

■ 2d heat equation with spatial resolution solved for time steps using the
backward Euler scheme and IGA discretisation on 128 Xeon Gold 6130 CPUs (2.10GHz, 96GB, 16 cores)

h = 2−6 Nt = #cores/64 ⋅ 1.000

R. Tielen, M. Möller, and C. Vuik (2022) Combining p-multigrid and multigrid reduction in time methods to obtain a scalable solver for isogeometric analysis, SN Appl. Sci. 4

Numerical examples: Weak scaling of MGRIT-IGA

#5: Heat-Eq with h = 2≠6 spatial resolution solved for Nt = cores/64 · 1.000 time steps
with backward Euler method on 128 Xeon Gold 6130 CPUs (2.10GHz, 96GB, 16 cores)

100

101

102

103

104

16
3

16
7 20

9 27
6

17
2

19
8

21
9 27

3

20
1

19
6 25

3 30
7

17
8

19
2 23
5 30

1

17
9

19
2 23

8 31
0

17
5

19
6 24

5 30
3

CP
U

tim
es

64 cores

128 cores

256 cores

512 cores

1024 cores

2048 cores

p = 2 p = 3 p = 4 p = 5

R. Tielen, M. Möller, and C. Vuik (2022) Combining p-multigrid and multigrid reduction in time
methods to obtain a scalable solver for isogeometric analysis, SN Appl. Sci. 410.1007/s42452-022-05043-7.

39 / 46

Lessons learned

■ Sequential processes like time integration can be parallelised using parallel-in-time methods

■ Sufficient number of MPI processes is required to compensate the computational/mathematical overhead

■ Rest of the math (and implementation) needs to be right as well

• Large lead to unstable explicit integrators use (semi-)implicit time integrators

• Stationary problems need to be solved efficiently (PhD Thesis by Roel Tielen)

• It’s very difficult to utilise many-core CPUs efficiently for memory-bound problems

ΔtC ⇒

Snapping meta-material simulation

H.M. Verhelst, J.H. Den Besten, and M. Möller (2024) An adaptive parallel arc-length method, Computers & Structures 296:107300

Arc-length method (ALM)

■ Nonlinear system of equations

• is the displacement vector computed by some PDE problem

• is the vector of internal forces depending on

• is a scaling factor for the applied load

■ Task: find the load-response curve

■ Challenges: bifurcation points, convergence problems, find
the full load-response path not a set of discrete points, …

G(u, λ) = N(u) − λP = 0

u

N(u) u

λ P

{(u, λ) : G(u, λ) = 0}

Computers and Structures 296 (2024) 107300

11

H.M. Verhelst, J.H. Den Besten and M. Möller

Fig. 9. Results of the collapsing truncated cone. The figure on the left depicts the full solution path, and the figure on the right depicts the inset indicated in the left
figure. The reference and serial solutions are represented by the solid line and the black markers, respectively. The solutions computed by the APALM are indicated
per level. The simulation is performed with a tolerance of 𝜀𝑙 = 𝜀𝑢 = 10−2 and an increment length of Δ𝐿 = 0.5.

Table 3
Computational time in [s] for the benchmark of the collapsing truncated cone for the ASPALM and
APALM for different numbers of worker processes. The times for the ASPALM are presented for the
serial initialization and the parallel correction phases, and the sum of the two is given as the total
computational time. The numbers in the Serial column should theoretically be the same, but they provide
a representation of the variation in the time measurements. The results are presented for simulations
with increment lengths Δ𝐿 = 0.5 (a) and Δ𝐿 = 0.0625 (b), and the italic row with 0 workers denotes the
ASALM method.

(a) Δ𝐿 = 0.5
Workers ASPALM APALM
Serial + Parallel = Total Parallel
0 160.2 244.0 404.2 436.6
1 162.5 247.2 409.7 424.8
2 169.5 130.1 299.6 207.1
4 170.6 68.1 238.7 172.9
8 162.6 43.0 205.6 160.5
16 175.3 32.0 207.3 173.3
32 175.5 27.3 202.8 170.8
64 170.1 23.3 193.4 169.5

(b) Δ𝐿 = 0.0625
Workers ASPALM APALM
Serial + Parallel = Total Parallel
0 499.7 2,575.9 3,075.6 3,055.3
1 467.5 2,232.5 2,700.0 2,783.8
2 496.3 1,337.0 1,833.2 1,573.4
4 467.8 654.4 1,122.2 789.5
8 490.1 322.6 812.7 489.4
16 467.6 167.6 635.1 496.0
32 494.1 97.1 591.1 483.9
64 491.4 55.7 547.1 493.6
128 485.0 41.5 526.5 494.5
256 493.8 32.9 526.7 491.4
512 491.8 25.8 517.6 488.5

time when using 64 workers. When using the APALM scheme, the col-
lapsing cone also shows that the computation times of the APALM are
similar to the times needed for serial initialization, in other words, a
classical ALM without adaptive corrections. When the number of inter-
vals is increased, i.e., when the arc-length parameter is decreased to
Δ𝐿 = 0.0625 (Table 3b), the scalability of the parallel phase of the AS-
PALM and of the full APALM reaches further, up to 64 workers.

5.3. Strip buckling

The third example involves a benchmark problem consisting of a bi-
furcation instability. The problem consists of a flat strip that is clamped
on one edge and free on all the others, with an in-plane compressive
load applied on the free end opposite to the clamped edge; see Fig. 10
for the problem set-up and [32] for the reference results. The ALM that
is used is a Crisfield method with Ψ = 0, with a pre-buckling arc-length
of 5 ⋅10−5, a post-buckling arc-length of 5, and a tolerance of the APALM
of 𝜀𝑙 = 𝜀𝑢 = 10−3. The serial ALM is equipped with an extension for the
computation of singular points (Wriggers 1988); see [33] for more de-
tails on this implementation. Using these methods, an initially flat strip
is compressed until the bifurcation point has been computed. As soon
as the strip becomes unstable, the bifurcation point is computed, and
a branch switch is performed, marking the transition between the pre-
buckling and post-buckling branches.

The results for the buckled strip are presented in Fig. 11. In this fig-
ure, the non-dimensional horizontal and vertical displacements of the
end point are plotted with respect to the non-dimensional applied load.
In the plots, the pre- and post-buckling branches are plotted separately
for clarity, but the branches should obviously be connected at the bi-
furcation point. As can be seen from the results, a rather coarse serial
approximation of the post-buckling branch gives a good starting point
for a multi-level approximation of the curve, providing additional detail
in the sharp corner in 𝑊 ∕𝐿 ∈ [0.7, 0.8]. In addition, it can be seen that
the pre-buckling branch requires no more levels than the first, as the
behaviour there is just a linear axial compression, hence the solution
path is straight.

As for the previous two benchmark examples, a scaling analysis of
the parallel evaluations is performed. The main difference between the
previous two examples is that the present example involves a bifur-
cation point. However, since the job queue includes the jobs from all
branches together, there is no idle time to wait for a branch to fin-
ish before starting a new branch; hence, it is expected that the parallel
scaling for a bifurcation problem should have the same scaling prop-
erties. Indeed, Table 4a shows that optimal scaling is achieved in the
parallel correction phase of the ASPALM up to 8 nodes, after which
the idle time to wait for the last job to finish significantly impacts the
scaling, as observed in the other benchmarks. In addition, it is found
that the APALM reaches efficient computation of the full adaptive load-

Computers and Structures 296 (2024) 107300

11

H.M. Verhelst, J.H. Den Besten and M. Möller

Fig. 9. Results of the collapsing truncated cone. The figure on the left depicts the full solution path, and the figure on the right depicts the inset indicated in the left
figure. The reference and serial solutions are represented by the solid line and the black markers, respectively. The solutions computed by the APALM are indicated
per level. The simulation is performed with a tolerance of 𝜀𝑙 = 𝜀𝑢 = 10−2 and an increment length of Δ𝐿 = 0.5.

Table 3
Computational time in [s] for the benchmark of the collapsing truncated cone for the ASPALM and
APALM for different numbers of worker processes. The times for the ASPALM are presented for the
serial initialization and the parallel correction phases, and the sum of the two is given as the total
computational time. The numbers in the Serial column should theoretically be the same, but they provide
a representation of the variation in the time measurements. The results are presented for simulations
with increment lengths Δ𝐿 = 0.5 (a) and Δ𝐿 = 0.0625 (b), and the italic row with 0 workers denotes the
ASALM method.

(a) Δ𝐿 = 0.5
Workers ASPALM APALM
Serial + Parallel = Total Parallel
0 160.2 244.0 404.2 436.6
1 162.5 247.2 409.7 424.8
2 169.5 130.1 299.6 207.1
4 170.6 68.1 238.7 172.9
8 162.6 43.0 205.6 160.5
16 175.3 32.0 207.3 173.3
32 175.5 27.3 202.8 170.8
64 170.1 23.3 193.4 169.5

(b) Δ𝐿 = 0.0625
Workers ASPALM APALM
Serial + Parallel = Total Parallel
0 499.7 2,575.9 3,075.6 3,055.3
1 467.5 2,232.5 2,700.0 2,783.8
2 496.3 1,337.0 1,833.2 1,573.4
4 467.8 654.4 1,122.2 789.5
8 490.1 322.6 812.7 489.4
16 467.6 167.6 635.1 496.0
32 494.1 97.1 591.1 483.9
64 491.4 55.7 547.1 493.6
128 485.0 41.5 526.5 494.5
256 493.8 32.9 526.7 491.4
512 491.8 25.8 517.6 488.5

time when using 64 workers. When using the APALM scheme, the col-
lapsing cone also shows that the computation times of the APALM are
similar to the times needed for serial initialization, in other words, a
classical ALM without adaptive corrections. When the number of inter-
vals is increased, i.e., when the arc-length parameter is decreased to
Δ𝐿 = 0.0625 (Table 3b), the scalability of the parallel phase of the AS-
PALM and of the full APALM reaches further, up to 64 workers.

5.3. Strip buckling

The third example involves a benchmark problem consisting of a bi-
furcation instability. The problem consists of a flat strip that is clamped
on one edge and free on all the others, with an in-plane compressive
load applied on the free end opposite to the clamped edge; see Fig. 10
for the problem set-up and [32] for the reference results. The ALM that
is used is a Crisfield method with Ψ = 0, with a pre-buckling arc-length
of 5 ⋅10−5, a post-buckling arc-length of 5, and a tolerance of the APALM
of 𝜀𝑙 = 𝜀𝑢 = 10−3. The serial ALM is equipped with an extension for the
computation of singular points (Wriggers 1988); see [33] for more de-
tails on this implementation. Using these methods, an initially flat strip
is compressed until the bifurcation point has been computed. As soon
as the strip becomes unstable, the bifurcation point is computed, and
a branch switch is performed, marking the transition between the pre-
buckling and post-buckling branches.

The results for the buckled strip are presented in Fig. 11. In this fig-
ure, the non-dimensional horizontal and vertical displacements of the
end point are plotted with respect to the non-dimensional applied load.
In the plots, the pre- and post-buckling branches are plotted separately
for clarity, but the branches should obviously be connected at the bi-
furcation point. As can be seen from the results, a rather coarse serial
approximation of the post-buckling branch gives a good starting point
for a multi-level approximation of the curve, providing additional detail
in the sharp corner in 𝑊 ∕𝐿 ∈ [0.7, 0.8]. In addition, it can be seen that
the pre-buckling branch requires no more levels than the first, as the
behaviour there is just a linear axial compression, hence the solution
path is straight.

As for the previous two benchmark examples, a scaling analysis of
the parallel evaluations is performed. The main difference between the
previous two examples is that the present example involves a bifur-
cation point. However, since the job queue includes the jobs from all
branches together, there is no idle time to wait for a branch to fin-
ish before starting a new branch; hence, it is expected that the parallel
scaling for a bifurcation problem should have the same scaling prop-
erties. Indeed, Table 4a shows that optimal scaling is achieved in the
parallel correction phase of the ASPALM up to 8 nodes, after which
the idle time to wait for the last job to finish significantly impacts the
scaling, as observed in the other benchmarks. In addition, it is found
that the APALM reaches efficient computation of the full adaptive load-

H.M. Verhelst, J.H. Den Besten, and M. Möller (2024) An adaptive parallel arc-length method, Computers & Structures 296:107300

Sequential ALM

■ Start with such that and compute the next increment such
that by solving the nonlinear problem using Newton’s method (for)

■ Scenario’s

• Load control: fix and compute

• Displacement control: fix and compute

• Arc-length control: fix and compute and
simultaneously such that

w0 := (u0, λ0) G(w0) = 0 Δwi = (Δui, Δλi)
G(wi+1 = wi + Δwi) = 0 i = 1,2,…

λ u

u λ

Δℓ λ u

f(Δu, Δλ) = Δu⊤Δu + Ψ2Δλ2P⊤P − Δℓ = 0

Computers and Structures 296 (2024) 107300

2

H.M. Verhelst, J.H. Den Besten and M. Möller

Fig. 1. Load (left), displacement (middle), and arc-length control (right) for structural analysis problems. The question mark (?) indicates the iteration where load
and displacement control encounter a limit point. In these situations, the next point obtained is typically difficult to find.

the training of neural networks [12] and [13]. Alternative methods for
parallel time integration are reviewed in the work of [2].

Compared to temporal parallelization methods, parallelization of
ALMs has received less attention in the academic community. As ALMs
are typically used for explorations of solutions across branches, par-
allel evaluation of branches can be performed as soon as the starting
point (and tangent) of each branch is known. The number of branches
related to a problem, however, depends typically on the problem that
is solved; hence, the parallel scalability of ALMs over branches is not
guaranteed. Parallelization within a branch is enabled by the Parallel
Adaptive Method for Pseudo-Arclength Continuation (PAMPAC) [14].
This method works with multiple predictors (with different step sizes)
and consequently correctors to select an optimal step size, which can
be performed in parallel. The PAMPAC method focuses on selecting a
maximal step size for the ALM for which the method does not converge.

In this paper, a parallelization of the arc-length method is presented
that is independent of the physical nature of the underlying problem.
That is, the method is developed such that the parallelization can be
performed within the branches. In addition to parallelization, the pre-
sented arc-length scheme also provides inherent adaptivity; therefore,
the method is referred to as the Adaptive Parallel Arc Length Method
(APALM). The working principle of the APALM is based on a multi-level
approach – inspired by MGRIT methods – where a coarse serial ap-
proximation of the solution space is refined in parallel until a measure
of convergence is achieved. Contrary to PAMPAC, the present method
does not maximise the step size for convergence of the ALM iterations,
but instead the parallelization is based on convergence of the solution
sub-intervals. Without loss of generality, the method is developed given
a constraint equation for the arc-length method; thus, it is generalised
for the Riks and Crisfield methods, amongst other methods available.

The outline of this paper is as follows: Section 2 provides a back-
ground on arc-length methods. In section 3, the parallelization of arc-
length methods is presented, referred to as the APALM. Thereafter,
section 4 provides algorithms for non-intrusive implementation of the
APALM, given an implementation of an existing ALM. Section 5 pro-
vides numerical benchmark problems and an application to the analysis
of a snapping meta-material, inspired by [15]. Finally, section 6 pro-
vides conclusions on the presented method.

2. Arc-length methods

In this section, the concept of arc-length methods is presented for
the sake of completeness. For a detailed overview, one can consult ref-
erences [3,4,16,17]. Let 𝑮(𝒖, 𝜆) = 𝟎 be a non-linear system of equations
to be solved, with 𝒖 the solution to the system of equations given a
parameter 𝜆. For structural analyses, 𝒖 is typically a vector contain-
ing discrete displacements of the degrees of freedom, and 𝜆 is a factor
scaling the magnitude of an applied load 𝑃 , i.e.

𝑮(𝒖,𝜆) =𝑵(𝒖)− 𝜆𝑷 , (1)

where 𝑵(𝒖) is a vector of internal forces, depending on the defor-
mation 𝒖. For incremental analyses, i.e., quasi-static analyses, a se-
ries of solutions 𝒘𝑖 = (𝒖𝑖, 𝜆𝑖) is obtained by computing increments
Δ𝒘𝑖 = (Δ𝒖𝑖, Δ𝜆𝑖) such that 𝒘𝑖+1 =𝒘𝑖 + Δ𝒘𝑖 and equation (1) is satis-
fied for 𝒘𝑖+1. These solutions can be obtained by Newton iterations: i)
fixing 𝜆 and finding 𝒖 (load control); ii) fixing some degrees of freedom
in 𝒖 and finding all 𝒖 and 𝜆 (displacement control); or iii) constraining
𝜆 and 𝒖 and solving for both (arc-length control); see Fig. 1. In the case
of arc-length control, the increment Δ𝒘 is measured by an increment
length 𝑑(Δ𝒘)

𝑑(Δ𝒘) =Δ𝒖⊤Δ𝒖+Ψ2Δ𝜆2𝑷 ⊤𝑷 , (2)
where Ψ is a scaling parameter given in [18,19]. The increment Δ𝒘 is
constrained by the arc-length Δ𝓁 in the constraint equation

𝑓 (Δ𝒘) = 𝑑(Δ𝒘)−Δ𝓁 = 0. (3)
Since 𝑮(𝒖, 𝜆) is non-linear, the increment Δ𝒘𝑖 is obtained iteratively,
i.e., Δ𝒘𝑖,𝑘+1 =Δ𝒘𝑖,𝑘 + 𝛿𝒘𝑖 with iteration count 𝑘. The constraint equa-
tion is solved together with equation (1) in every iteration, yielding the
Riks and Crisfield methods [3,4]

𝑓 (Δ𝒘𝑖,𝑘,Δ𝑙) =Δ𝒖⊤𝑖,0Δ𝒖𝑖,𝑘 +Ψ2Δ𝜆𝑖,0Δ𝜆𝑖,0𝑷 ⊤𝑷 −Δ𝓁2 = 0, Riks, (4)
𝑓 (Δ𝒘𝑖,𝑘,Δ𝑙) =Δ𝒖⊤𝑖,𝑘Δ𝒖𝑖,𝑘 +Ψ2Δ𝜆𝑖,𝑘Δ𝜆𝑖,𝑘𝑷 ⊤𝑷 −Δ𝓁2 = 0, Crisfield,

(5)
where Δ𝒘0 is the increment in the first iteration. The Crisfield method
generally performs well with sharp snap-backs but has the disadvantage
that the constraint equation has two intersections with the path formed
by equation (1). Hence, a root has to be selected, which is elaborated in
the works [4,16]. When multiple intersections are found, complex roots
are found [20], which can be resolved using one of the methods pro-
posed in [21,22]. It should be noted that any other arc-length method
can be used within the scheme proposed in this paper, as long as the
constraint equation is satisfied when the arc-length step is converged.

3. Adaptive parallel arc-length method

In this section, our new approach, the APALM, is presented. Firstly,
the method is conceptualised along with some illustrative figures (sec-
tion 3.1). Secondly, details are provided on the curve parameterization
and the measurement of errors (section 3.2). Lastly, section 3.3 presents
(re-)parameterization methods for the solution curve. These parameter-
izations will be essential to the data structure of the APALM. It should
be noted that the method described in this section is presented only for
one continuation parameter, 𝜆.

3.1. Concept

Learning from parallel-in-time methods like Parareal or MGRIT, par-
allelization in the APALM is achieved from a subdivision of the curve

Computers and Structures 296 (2024) 107300

2

H.M. Verhelst, J.H. Den Besten and M. Möller

Fig. 1. Load (left), displacement (middle), and arc-length control (right) for structural analysis problems. The question mark (?) indicates the iteration where load
and displacement control encounter a limit point. In these situations, the next point obtained is typically difficult to find.

the training of neural networks [12] and [13]. Alternative methods for
parallel time integration are reviewed in the work of [2].

Compared to temporal parallelization methods, parallelization of
ALMs has received less attention in the academic community. As ALMs
are typically used for explorations of solutions across branches, par-
allel evaluation of branches can be performed as soon as the starting
point (and tangent) of each branch is known. The number of branches
related to a problem, however, depends typically on the problem that
is solved; hence, the parallel scalability of ALMs over branches is not
guaranteed. Parallelization within a branch is enabled by the Parallel
Adaptive Method for Pseudo-Arclength Continuation (PAMPAC) [14].
This method works with multiple predictors (with different step sizes)
and consequently correctors to select an optimal step size, which can
be performed in parallel. The PAMPAC method focuses on selecting a
maximal step size for the ALM for which the method does not converge.

In this paper, a parallelization of the arc-length method is presented
that is independent of the physical nature of the underlying problem.
That is, the method is developed such that the parallelization can be
performed within the branches. In addition to parallelization, the pre-
sented arc-length scheme also provides inherent adaptivity; therefore,
the method is referred to as the Adaptive Parallel Arc Length Method
(APALM). The working principle of the APALM is based on a multi-level
approach – inspired by MGRIT methods – where a coarse serial ap-
proximation of the solution space is refined in parallel until a measure
of convergence is achieved. Contrary to PAMPAC, the present method
does not maximise the step size for convergence of the ALM iterations,
but instead the parallelization is based on convergence of the solution
sub-intervals. Without loss of generality, the method is developed given
a constraint equation for the arc-length method; thus, it is generalised
for the Riks and Crisfield methods, amongst other methods available.

The outline of this paper is as follows: Section 2 provides a back-
ground on arc-length methods. In section 3, the parallelization of arc-
length methods is presented, referred to as the APALM. Thereafter,
section 4 provides algorithms for non-intrusive implementation of the
APALM, given an implementation of an existing ALM. Section 5 pro-
vides numerical benchmark problems and an application to the analysis
of a snapping meta-material, inspired by [15]. Finally, section 6 pro-
vides conclusions on the presented method.

2. Arc-length methods

In this section, the concept of arc-length methods is presented for
the sake of completeness. For a detailed overview, one can consult ref-
erences [3,4,16,17]. Let 𝑮(𝒖, 𝜆) = 𝟎 be a non-linear system of equations
to be solved, with 𝒖 the solution to the system of equations given a
parameter 𝜆. For structural analyses, 𝒖 is typically a vector contain-
ing discrete displacements of the degrees of freedom, and 𝜆 is a factor
scaling the magnitude of an applied load 𝑃 , i.e.

𝑮(𝒖,𝜆) =𝑵(𝒖)− 𝜆𝑷 , (1)

where 𝑵(𝒖) is a vector of internal forces, depending on the defor-
mation 𝒖. For incremental analyses, i.e., quasi-static analyses, a se-
ries of solutions 𝒘𝑖 = (𝒖𝑖, 𝜆𝑖) is obtained by computing increments
Δ𝒘𝑖 = (Δ𝒖𝑖, Δ𝜆𝑖) such that 𝒘𝑖+1 =𝒘𝑖 + Δ𝒘𝑖 and equation (1) is satis-
fied for 𝒘𝑖+1. These solutions can be obtained by Newton iterations: i)
fixing 𝜆 and finding 𝒖 (load control); ii) fixing some degrees of freedom
in 𝒖 and finding all 𝒖 and 𝜆 (displacement control); or iii) constraining
𝜆 and 𝒖 and solving for both (arc-length control); see Fig. 1. In the case
of arc-length control, the increment Δ𝒘 is measured by an increment
length 𝑑(Δ𝒘)

𝑑(Δ𝒘) =Δ𝒖⊤Δ𝒖+Ψ2Δ𝜆2𝑷 ⊤𝑷 , (2)
where Ψ is a scaling parameter given in [18,19]. The increment Δ𝒘 is
constrained by the arc-length Δ𝓁 in the constraint equation

𝑓 (Δ𝒘) = 𝑑(Δ𝒘)−Δ𝓁 = 0. (3)
Since 𝑮(𝒖, 𝜆) is non-linear, the increment Δ𝒘𝑖 is obtained iteratively,
i.e., Δ𝒘𝑖,𝑘+1 =Δ𝒘𝑖,𝑘 + 𝛿𝒘𝑖 with iteration count 𝑘. The constraint equa-
tion is solved together with equation (1) in every iteration, yielding the
Riks and Crisfield methods [3,4]

𝑓 (Δ𝒘𝑖,𝑘,Δ𝑙) =Δ𝒖⊤𝑖,0Δ𝒖𝑖,𝑘 +Ψ2Δ𝜆𝑖,0Δ𝜆𝑖,0𝑷 ⊤𝑷 −Δ𝓁2 = 0, Riks, (4)
𝑓 (Δ𝒘𝑖,𝑘,Δ𝑙) =Δ𝒖⊤𝑖,𝑘Δ𝒖𝑖,𝑘 +Ψ2Δ𝜆𝑖,𝑘Δ𝜆𝑖,𝑘𝑷 ⊤𝑷 −Δ𝓁2 = 0, Crisfield,

(5)
where Δ𝒘0 is the increment in the first iteration. The Crisfield method
generally performs well with sharp snap-backs but has the disadvantage
that the constraint equation has two intersections with the path formed
by equation (1). Hence, a root has to be selected, which is elaborated in
the works [4,16]. When multiple intersections are found, complex roots
are found [20], which can be resolved using one of the methods pro-
posed in [21,22]. It should be noted that any other arc-length method
can be used within the scheme proposed in this paper, as long as the
constraint equation is satisfied when the arc-length step is converged.

3. Adaptive parallel arc-length method

In this section, our new approach, the APALM, is presented. Firstly,
the method is conceptualised along with some illustrative figures (sec-
tion 3.1). Secondly, details are provided on the curve parameterization
and the measurement of errors (section 3.2). Lastly, section 3.3 presents
(re-)parameterization methods for the solution curve. These parameter-
izations will be essential to the data structure of the APALM. It should
be noted that the method described in this section is presented only for
one continuation parameter, 𝜆.

3.1. Concept

Learning from parallel-in-time methods like Parareal or MGRIT, par-
allelization in the APALM is achieved from a subdivision of the curve

Computers and Structures 296 (2024) 107300

2

H.M. Verhelst, J.H. Den Besten and M. Möller

Fig. 1. Load (left), displacement (middle), and arc-length control (right) for structural analysis problems. The question mark (?) indicates the iteration where load
and displacement control encounter a limit point. In these situations, the next point obtained is typically difficult to find.

the training of neural networks [12] and [13]. Alternative methods for
parallel time integration are reviewed in the work of [2].

Compared to temporal parallelization methods, parallelization of
ALMs has received less attention in the academic community. As ALMs
are typically used for explorations of solutions across branches, par-
allel evaluation of branches can be performed as soon as the starting
point (and tangent) of each branch is known. The number of branches
related to a problem, however, depends typically on the problem that
is solved; hence, the parallel scalability of ALMs over branches is not
guaranteed. Parallelization within a branch is enabled by the Parallel
Adaptive Method for Pseudo-Arclength Continuation (PAMPAC) [14].
This method works with multiple predictors (with different step sizes)
and consequently correctors to select an optimal step size, which can
be performed in parallel. The PAMPAC method focuses on selecting a
maximal step size for the ALM for which the method does not converge.

In this paper, a parallelization of the arc-length method is presented
that is independent of the physical nature of the underlying problem.
That is, the method is developed such that the parallelization can be
performed within the branches. In addition to parallelization, the pre-
sented arc-length scheme also provides inherent adaptivity; therefore,
the method is referred to as the Adaptive Parallel Arc Length Method
(APALM). The working principle of the APALM is based on a multi-level
approach – inspired by MGRIT methods – where a coarse serial ap-
proximation of the solution space is refined in parallel until a measure
of convergence is achieved. Contrary to PAMPAC, the present method
does not maximise the step size for convergence of the ALM iterations,
but instead the parallelization is based on convergence of the solution
sub-intervals. Without loss of generality, the method is developed given
a constraint equation for the arc-length method; thus, it is generalised
for the Riks and Crisfield methods, amongst other methods available.

The outline of this paper is as follows: Section 2 provides a back-
ground on arc-length methods. In section 3, the parallelization of arc-
length methods is presented, referred to as the APALM. Thereafter,
section 4 provides algorithms for non-intrusive implementation of the
APALM, given an implementation of an existing ALM. Section 5 pro-
vides numerical benchmark problems and an application to the analysis
of a snapping meta-material, inspired by [15]. Finally, section 6 pro-
vides conclusions on the presented method.

2. Arc-length methods

In this section, the concept of arc-length methods is presented for
the sake of completeness. For a detailed overview, one can consult ref-
erences [3,4,16,17]. Let 𝑮(𝒖, 𝜆) = 𝟎 be a non-linear system of equations
to be solved, with 𝒖 the solution to the system of equations given a
parameter 𝜆. For structural analyses, 𝒖 is typically a vector contain-
ing discrete displacements of the degrees of freedom, and 𝜆 is a factor
scaling the magnitude of an applied load 𝑃 , i.e.

𝑮(𝒖,𝜆) =𝑵(𝒖)− 𝜆𝑷 , (1)

where 𝑵(𝒖) is a vector of internal forces, depending on the defor-
mation 𝒖. For incremental analyses, i.e., quasi-static analyses, a se-
ries of solutions 𝒘𝑖 = (𝒖𝑖, 𝜆𝑖) is obtained by computing increments
Δ𝒘𝑖 = (Δ𝒖𝑖, Δ𝜆𝑖) such that 𝒘𝑖+1 =𝒘𝑖 + Δ𝒘𝑖 and equation (1) is satis-
fied for 𝒘𝑖+1. These solutions can be obtained by Newton iterations: i)
fixing 𝜆 and finding 𝒖 (load control); ii) fixing some degrees of freedom
in 𝒖 and finding all 𝒖 and 𝜆 (displacement control); or iii) constraining
𝜆 and 𝒖 and solving for both (arc-length control); see Fig. 1. In the case
of arc-length control, the increment Δ𝒘 is measured by an increment
length 𝑑(Δ𝒘)

𝑑(Δ𝒘) =Δ𝒖⊤Δ𝒖+Ψ2Δ𝜆2𝑷 ⊤𝑷 , (2)
where Ψ is a scaling parameter given in [18,19]. The increment Δ𝒘 is
constrained by the arc-length Δ𝓁 in the constraint equation

𝑓 (Δ𝒘) = 𝑑(Δ𝒘)−Δ𝓁 = 0. (3)
Since 𝑮(𝒖, 𝜆) is non-linear, the increment Δ𝒘𝑖 is obtained iteratively,
i.e., Δ𝒘𝑖,𝑘+1 =Δ𝒘𝑖,𝑘 + 𝛿𝒘𝑖 with iteration count 𝑘. The constraint equa-
tion is solved together with equation (1) in every iteration, yielding the
Riks and Crisfield methods [3,4]

𝑓 (Δ𝒘𝑖,𝑘,Δ𝑙) =Δ𝒖⊤𝑖,0Δ𝒖𝑖,𝑘 +Ψ2Δ𝜆𝑖,0Δ𝜆𝑖,0𝑷 ⊤𝑷 −Δ𝓁2 = 0, Riks, (4)
𝑓 (Δ𝒘𝑖,𝑘,Δ𝑙) =Δ𝒖⊤𝑖,𝑘Δ𝒖𝑖,𝑘 +Ψ2Δ𝜆𝑖,𝑘Δ𝜆𝑖,𝑘𝑷 ⊤𝑷 −Δ𝓁2 = 0, Crisfield,

(5)
where Δ𝒘0 is the increment in the first iteration. The Crisfield method
generally performs well with sharp snap-backs but has the disadvantage
that the constraint equation has two intersections with the path formed
by equation (1). Hence, a root has to be selected, which is elaborated in
the works [4,16]. When multiple intersections are found, complex roots
are found [20], which can be resolved using one of the methods pro-
posed in [21,22]. It should be noted that any other arc-length method
can be used within the scheme proposed in this paper, as long as the
constraint equation is satisfied when the arc-length step is converged.

3. Adaptive parallel arc-length method

In this section, our new approach, the APALM, is presented. Firstly,
the method is conceptualised along with some illustrative figures (sec-
tion 3.1). Secondly, details are provided on the curve parameterization
and the measurement of errors (section 3.2). Lastly, section 3.3 presents
(re-)parameterization methods for the solution curve. These parameter-
izations will be essential to the data structure of the APALM. It should
be noted that the method described in this section is presented only for
one continuation parameter, 𝜆.

3.1. Concept

Learning from parallel-in-time methods like Parareal or MGRIT, par-
allelization in the APALM is achieved from a subdivision of the curve

H.M. Verhelst, J.H. Den Besten, and M. Möller (2024) An adaptive parallel arc-length method, Computers & Structures 296:107300

Adaptive parallel ALM
Computers and Structures 296 (2024) 107300

3

H.M. Verhelst, J.H. Den Besten and M. Möller

Fig. 2. Concept of the APALM. The large open circles represent reference solutions from a previously computed level. The small solid circles represent new data on the
interval between two reference solutions, computed by the arc-length method (here the large dashed circle). The black dashed line indicates the curve estimation
for which the sum is equal to the total curve length.

length domain. Contrary to MGRIT and Parareal, where the temporal do-
main 𝑡 ∈ [𝑇0, 𝑇1] is fixed, the APALM will work with a changing curve
length domain 𝑠 ∈ [𝑆0, 𝑆1] depending on the length of the traversed
path, with an underlying fixed parametric domain with parametric co-
ordinate 𝜉 ∈ [0, 1]. The APALM is initialised with an initial coarse grid
approximation, in which the parametric and the curve length domains
are subdivided into sub-domains 𝜉 ∈ [𝜉𝑖, 𝜉𝑖+1] and 𝑠 ∈ [𝑠𝑖, 𝑠𝑖+1], respec-
tively, as illustrated in Fig. 2.

In the initialization phase of the APALM, the first subdivision into
sub-intervals is made (see Fig. 2a). Here, the sizes of the sub-intervals
𝑠 ∈ [𝑠𝓁𝑖 , 𝑠

𝓁
𝑖+1] are determined based on the distance measure that is

used by the corresponding ALM; see equation (2). Note that the super-
script 𝓁 denotes the 𝓁th level. Based on the initial curve-length domain
𝑠 ∈ [0, 𝑆], where 𝑆 is the total length of the initial curve, and the
corresponding sub-intervals, the curve-length domain can be mapped
accordingly onto a parametric domain; see section 4 for more details.

With an initialised computational domain, the number of sub-
intervals determines the degree of parallelization. On any sub-interval,
[𝑠𝓁𝑖 , 𝑠

𝓁
𝑖+1] data at the start-point and end-point is known, which can be

used to initiate an arc-length method to re-compute the sub-interval
with 𝑁 increments, i.e., with an arc-length of Δ𝐿𝓁+1

𝑖 = Δ𝐿𝓁
𝑖 ∕𝑁 (see

Fig. 2b).
After sub-interval [𝑠𝓁+1𝑖 , 𝑠𝓁+1𝑖+1] has been finished, the distance of the

end-point of the sub-interval can be compared to the previously known
solution at 𝑠𝓁𝑖+1, which is called parallel verification of intervals in Fig. 2c.
Since the sub-interval is traversed in 𝑁 increments with length Δ𝑠0𝑖 ∕𝑁 ,
the triangle inequality with the arc-length measure implies that there
must be a distance greater than or equal to zero between the newly
found end-point and the reference end-point. The more ‘curved’ the
domain in-between, the larger this distance. Based on an error measure
(see section 3.2), intervals with a relatively large deviation between the
coarse-level arc length and the fine-level arc length are to be marked
for ‘refinement’.

Computers and Structures 296 (2024) 107300

3

H.M. Verhelst, J.H. Den Besten and M. Möller

Fig. 2. Concept of the APALM. The large open circles represent reference solutions from a previously computed level. The small solid circles represent new data on the
interval between two reference solutions, computed by the arc-length method (here the large dashed circle). The black dashed line indicates the curve estimation
for which the sum is equal to the total curve length.

length domain. Contrary to MGRIT and Parareal, where the temporal do-
main 𝑡 ∈ [𝑇0, 𝑇1] is fixed, the APALM will work with a changing curve
length domain 𝑠 ∈ [𝑆0, 𝑆1] depending on the length of the traversed
path, with an underlying fixed parametric domain with parametric co-
ordinate 𝜉 ∈ [0, 1]. The APALM is initialised with an initial coarse grid
approximation, in which the parametric and the curve length domains
are subdivided into sub-domains 𝜉 ∈ [𝜉𝑖, 𝜉𝑖+1] and 𝑠 ∈ [𝑠𝑖, 𝑠𝑖+1], respec-
tively, as illustrated in Fig. 2.

In the initialization phase of the APALM, the first subdivision into
sub-intervals is made (see Fig. 2a). Here, the sizes of the sub-intervals
𝑠 ∈ [𝑠𝓁𝑖 , 𝑠

𝓁
𝑖+1] are determined based on the distance measure that is

used by the corresponding ALM; see equation (2). Note that the super-
script 𝓁 denotes the 𝓁th level. Based on the initial curve-length domain
𝑠 ∈ [0, 𝑆], where 𝑆 is the total length of the initial curve, and the
corresponding sub-intervals, the curve-length domain can be mapped
accordingly onto a parametric domain; see section 4 for more details.

With an initialised computational domain, the number of sub-
intervals determines the degree of parallelization. On any sub-interval,
[𝑠𝓁𝑖 , 𝑠

𝓁
𝑖+1] data at the start-point and end-point is known, which can be

used to initiate an arc-length method to re-compute the sub-interval
with 𝑁 increments, i.e., with an arc-length of Δ𝐿𝓁+1

𝑖 = Δ𝐿𝓁
𝑖 ∕𝑁 (see

Fig. 2b).
After sub-interval [𝑠𝓁+1𝑖 , 𝑠𝓁+1𝑖+1] has been finished, the distance of the

end-point of the sub-interval can be compared to the previously known
solution at 𝑠𝓁𝑖+1, which is called parallel verification of intervals in Fig. 2c.
Since the sub-interval is traversed in 𝑁 increments with length Δ𝑠0𝑖 ∕𝑁 ,
the triangle inequality with the arc-length measure implies that there
must be a distance greater than or equal to zero between the newly
found end-point and the reference end-point. The more ‘curved’ the
domain in-between, the larger this distance. Based on an error measure
(see section 3.2), intervals with a relatively large deviation between the
coarse-level arc length and the fine-level arc length are to be marked
for ‘refinement’.

Initialisation Parallel computation of subintervals
H.M. Verhelst, J.H. Den Besten, and M. Möller (2024) An adaptive parallel arc-length method, Computers & Structures 296:107300

Adaptive parallel ALM

Parallel verification of subintervals Curve-length reparameterization

Computers and Structures 296 (2024) 107300

3

H.M. Verhelst, J.H. Den Besten and M. Möller

Fig. 2. Concept of the APALM. The large open circles represent reference solutions from a previously computed level. The small solid circles represent new data on the
interval between two reference solutions, computed by the arc-length method (here the large dashed circle). The black dashed line indicates the curve estimation
for which the sum is equal to the total curve length.

length domain. Contrary to MGRIT and Parareal, where the temporal do-
main 𝑡 ∈ [𝑇0, 𝑇1] is fixed, the APALM will work with a changing curve
length domain 𝑠 ∈ [𝑆0, 𝑆1] depending on the length of the traversed
path, with an underlying fixed parametric domain with parametric co-
ordinate 𝜉 ∈ [0, 1]. The APALM is initialised with an initial coarse grid
approximation, in which the parametric and the curve length domains
are subdivided into sub-domains 𝜉 ∈ [𝜉𝑖, 𝜉𝑖+1] and 𝑠 ∈ [𝑠𝑖, 𝑠𝑖+1], respec-
tively, as illustrated in Fig. 2.

In the initialization phase of the APALM, the first subdivision into
sub-intervals is made (see Fig. 2a). Here, the sizes of the sub-intervals
𝑠 ∈ [𝑠𝓁𝑖 , 𝑠

𝓁
𝑖+1] are determined based on the distance measure that is

used by the corresponding ALM; see equation (2). Note that the super-
script 𝓁 denotes the 𝓁th level. Based on the initial curve-length domain
𝑠 ∈ [0, 𝑆], where 𝑆 is the total length of the initial curve, and the
corresponding sub-intervals, the curve-length domain can be mapped
accordingly onto a parametric domain; see section 4 for more details.

With an initialised computational domain, the number of sub-
intervals determines the degree of parallelization. On any sub-interval,
[𝑠𝓁𝑖 , 𝑠

𝓁
𝑖+1] data at the start-point and end-point is known, which can be

used to initiate an arc-length method to re-compute the sub-interval
with 𝑁 increments, i.e., with an arc-length of Δ𝐿𝓁+1

𝑖 = Δ𝐿𝓁
𝑖 ∕𝑁 (see

Fig. 2b).
After sub-interval [𝑠𝓁+1𝑖 , 𝑠𝓁+1𝑖+1] has been finished, the distance of the

end-point of the sub-interval can be compared to the previously known
solution at 𝑠𝓁𝑖+1, which is called parallel verification of intervals in Fig. 2c.
Since the sub-interval is traversed in 𝑁 increments with length Δ𝑠0𝑖 ∕𝑁 ,
the triangle inequality with the arc-length measure implies that there
must be a distance greater than or equal to zero between the newly
found end-point and the reference end-point. The more ‘curved’ the
domain in-between, the larger this distance. Based on an error measure
(see section 3.2), intervals with a relatively large deviation between the
coarse-level arc length and the fine-level arc length are to be marked
for ‘refinement’.

Computers and Structures 296 (2024) 107300

3

H.M. Verhelst, J.H. Den Besten and M. Möller

Fig. 2. Concept of the APALM. The large open circles represent reference solutions from a previously computed level. The small solid circles represent new data on the
interval between two reference solutions, computed by the arc-length method (here the large dashed circle). The black dashed line indicates the curve estimation
for which the sum is equal to the total curve length.

length domain. Contrary to MGRIT and Parareal, where the temporal do-
main 𝑡 ∈ [𝑇0, 𝑇1] is fixed, the APALM will work with a changing curve
length domain 𝑠 ∈ [𝑆0, 𝑆1] depending on the length of the traversed
path, with an underlying fixed parametric domain with parametric co-
ordinate 𝜉 ∈ [0, 1]. The APALM is initialised with an initial coarse grid
approximation, in which the parametric and the curve length domains
are subdivided into sub-domains 𝜉 ∈ [𝜉𝑖, 𝜉𝑖+1] and 𝑠 ∈ [𝑠𝑖, 𝑠𝑖+1], respec-
tively, as illustrated in Fig. 2.

In the initialization phase of the APALM, the first subdivision into
sub-intervals is made (see Fig. 2a). Here, the sizes of the sub-intervals
𝑠 ∈ [𝑠𝓁𝑖 , 𝑠

𝓁
𝑖+1] are determined based on the distance measure that is

used by the corresponding ALM; see equation (2). Note that the super-
script 𝓁 denotes the 𝓁th level. Based on the initial curve-length domain
𝑠 ∈ [0, 𝑆], where 𝑆 is the total length of the initial curve, and the
corresponding sub-intervals, the curve-length domain can be mapped
accordingly onto a parametric domain; see section 4 for more details.

With an initialised computational domain, the number of sub-
intervals determines the degree of parallelization. On any sub-interval,
[𝑠𝓁𝑖 , 𝑠

𝓁
𝑖+1] data at the start-point and end-point is known, which can be

used to initiate an arc-length method to re-compute the sub-interval
with 𝑁 increments, i.e., with an arc-length of Δ𝐿𝓁+1

𝑖 = Δ𝐿𝓁
𝑖 ∕𝑁 (see

Fig. 2b).
After sub-interval [𝑠𝓁+1𝑖 , 𝑠𝓁+1𝑖+1] has been finished, the distance of the

end-point of the sub-interval can be compared to the previously known
solution at 𝑠𝓁𝑖+1, which is called parallel verification of intervals in Fig. 2c.
Since the sub-interval is traversed in 𝑁 increments with length Δ𝑠0𝑖 ∕𝑁 ,
the triangle inequality with the arc-length measure implies that there
must be a distance greater than or equal to zero between the newly
found end-point and the reference end-point. The more ‘curved’ the
domain in-between, the larger this distance. Based on an error measure
(see section 3.2), intervals with a relatively large deviation between the
coarse-level arc length and the fine-level arc length are to be marked
for ‘refinement’.

H.M. Verhelst, J.H. Den Besten, and M. Möller (2024) An adaptive parallel arc-length method, Computers & Structures 296:107300

Implementation details

■ Manager (MPI rank 0)

• Performs sequential initialisation (relaxed in the fully parallel APALM method)

• Checks convergence criteria and sends ‘kill command’

■ Pool of workers (MPI ranks 1…N)

• Query global queue with complete ‘job description’ (problem configuration + initial guess)

• Remove first job from queue, perform computation, add result to output list, perform validation, and
add new (refined) jobs to the global job queue if needed

• Terminate on “kill command”

Example: collapse of a shallow roof

■ Isogeometric Kirchhoff-Love shell model (gsKLShell extension)

■ 4 x 4 NURBS elements of degree 3

H.M. Verhelst, J.H. Den Besten, and M. Möller (2024) An adaptive parallel arc-length method, Computers & Structures 296:107300

Example: collapse of a shallow roof

■ DelftBlue: Intel Xeon Gold 6248R, 24 cores @ 3.0 GHz

Computers and Structures 296 (2024) 107300

10

H.M. Verhelst, J.H. Den Besten and M. Möller

Fig. 7. Results of the collapsing roof. The figure on the left indicates the full solution path, and the figures on the right depict the insets indicated in the left figure.
The reference and serial solutions are represented by the solid line and the black markers, respectively. The solutions computed by the APALM are indicated per
level. The simulation is performed with a tolerance of 𝜀𝑙 = 𝜀𝑢 = 10−2 and an increment length of Δ𝐿 = 30.

Table 2
Computational time in [s] for the benchmark of the collapsing roof for the ASPALM and APALM for dif-
ferent numbers of worker processes. The times for the ASPALM are presented for the serial initialization
and the parallel correction phases, and the sum of the two is given as the total computational time. The
numbers in the Serial column should theoretically be the same, but they provide a representation of the
variation in the time measurements. The results are presented for simulations with increment lengths
Δ𝐿 = 30 (a) and Δ𝐿 = 2.5 (b), and the italic row with 0 workers denotes the ASALM method.

(a) Δ𝐿 = 30
Workers ASPALM APALM
Serial + Parallel = Total Parallel
0 115.7 195.3 311.1 287.1
1 119.2 209.0 328.2 318.8
2 114.0 100.8 214.8 162.4
4 109.5 46.1 155.6 115.8
8 115.0 27.0 142.1 115.9
16 115.1 17.8 132.9 116.3
32 114.9 15.9 130.8 113.0
64 114.5 13.3 127.8 116.0

(b) Δ𝐿 = 2.5
Workers ASPALM APALM
Serial + Parallel = Total Parallel
0 507.2 1,778.1 2,285.3 2,187.1
1 500.5 1,757.7 2,258.2 2,310.2
2 447.5 835.3 1,282.9 1,114.0
4 493.4 449.4 942.8 558.1
8 496.8 223.2 720.0 453.9
16 503.3 113.0 616.2 483.6
32 493.2 58.1 551.3 510.9
64 504.2 29.2 533.4 498.3
128 501.0 20.2 521.3 494.7
256 505.5 18.8 524.3 509.6

work of [26], the full collapsing behaviour was revealed using arc-
length methods. The geometry, material, and load specifications can
be found in Fig. 8.

The truncated cone is modelled using a quarter geometry using sym-
metry conditions to represent the axisymmetry as used in the original
case of [31]. The geometry is modelled with 32 NURBS elements of de-
gree 2 over the height. Further, an initial arc length of 0.5 is used, and
the scaling factor is Ψ = 0. The top boundary Γ2 is free, and on the
bottom boundary Γ4, all displacements are fixed. The other boundaries
have symmetric boundary conditions. The governing material model is
an incompressible Mooney-Rivlin material model with a strain energy
density function (with a slight abuse of notation)

Ψ(𝐂) =
𝑐1
2
(
𝐼1 − 3

)
+

𝑐2
2
(
𝐼2 − 3

)
, (18)

with 𝐼1 and 𝐼2 the first and second invariants of the deformation tensor
𝐂 = 𝑭 ⊤𝑭 . More information on the problem set-up and the material
models can be found in [26]. The reference results are obtained from a
serial ALM computation with a sufficiently small increment size.

The results of the collapsing truncated cone problem are presented
in Fig. 9. As seen in this picture, the serial initialization provides a
coarse approximation of the path but leaves out details, e.g., the rotated
“S”-shaped curve in the inset in Fig. 9. From the results, it is clear that
the APALM focuses its refinement on the curved parts of the path and
reveals the “S”-shaped curve among other features of the path.

Similar to the collapse of the roof, a scaling analysis of the paral-
lel evaluations is performed. The results in Table 3a verify that, as for

Fig. 8. The problem definition for the benchmark of the collapsing truncated
cone with inner radii 𝑅1 = 1 [m] and 𝑅2 = 2 [m] and height 𝐻 = 1 [m]. The
thickness of the cone is 𝑡 = 0.1 [m]. The cone is modelled by using a quarter of
the geometry, using symmetry conditions on Γ1 and Γ3. The displacements at
the bottom boundary (Γ4) are fixed, and on the top boundary, a variable line
load is applied and is variable with magnitude 𝑝 = 1 [N∕mm] and magnification
factor 𝜆. The material of the cone is modelled using an incompressible Mooney-
Rivlin model with parameters 𝜇 = 𝑐1 + 𝑐2 = 4.225 [N∕mm2], 𝑐1∕𝑐2 = 7.

the benchmark example with the collapsing roof, the scalability of the
parallel correction phase scales optimally up to 8 workers, where the
parallel correction phase takes around 15% of the total computational

H.M. Verhelst, J.H. Den Besten, and M. Möller (2024) An adaptive parallel arc-length method, Computers & Structures 296:107300

Example: snapping meta-material

■ Compressible Neo-Hookean material model

■ 132 B-spline patches and 16.563 dofs in total

Computers and Structures 296 (2024) 107300

13

H.M. Verhelst, J.H. Den Besten and M. Möller

Fig. 11. Results of the buckling of a clamped strip. The left figure provides the out-of-plane displacement of the free end with respect to the non-dimensional load
4𝑃𝐿2∕𝜋2𝐸𝐼 , and the right figure represents the horizontal displacement of the free end with respect to the same non-dimensional load. In both figures, buckling
occurs when 4𝑃𝐿2∕𝜋2𝐸𝐼 = 1 and the axes are split on this point to make the pre- and post-buckling branches both visible. The simulation is performed with a
tolerance of 𝜀𝑙 = 𝜀𝑢 = 10−3 and a step length of Δ𝐿 = 5 ⋅ 10−5 (pre-buckling) and Δ𝐿 = 5 (post-buckling).

Fig. 12. The problem definition for the snapping meta material using a grid of 3 × 2.5 elements (a) with the element geometry as defined in (b). The element
dimensions are defined using the thickness of the load-bearing part 𝑡𝑏 = 1.5 [mm] and the thickness of the snapping part 𝑡𝑠 = 1.0 [mm], the thickness of the gap
𝑡𝑔 = 1.0 [mm] and the thickness of the connectors 𝑡𝑤 = 1.5 [mm], such that the height ℎ = 𝑡𝑏 + 𝑡𝑠 + 2𝑡𝑔 . The length of the element is 𝓁 = 10 [mm], and the amplitude
of the cosine wave defining the element shape is given by 𝑎 = 0.3𝑙. Since the meta-material has 3 × 2.5 elements, the total width is 𝑊 = 3𝓁. The height of the
total metamaterial is given by 𝐻 = 3ℎ + 2𝑡𝑔 + 𝑡𝑠 + ℎ𝐵 + ℎ𝑇 , where ℎ𝐵 = ℎ𝑇 = 5𝑡𝑔 are the buffer zones on the top and the bottom. The thickness of the specimen (in
out-of-plane direction) is 𝑏 = 3 [mm]. The material is defined using a compressible Neo-Hookean material model with Young’s modulus 𝐸 = 78 [N∕mm2] and Poisson
ratio 𝜈 = 0.4 [−]. The bottom boundary Γ1 is fixed using 𝑢𝑥 = 𝑢𝑦 = 0, and the top boundary Γ2 is fixed in the horizontal direction (𝑢𝑥 = 0) and coupled in the vertical
direction 𝑢𝑦. The load applied on the top boundary is a variable defined by 𝜆𝑃 .

are performed as soon as the first path segments have been initial-
ized. Conceptually, the APALM has a higher degree of parallelization
since the workers are not idle until the full solution curve is obtained.
Given a basic step function and distance computation, the present pa-
per provides all algorithms necessary for implementing the APALM with
manager-worker parallelization.

The implementation of the APALM is evaluated using three bench-
mark problems and an application example. The first problem involves
the collapse of a composite shallow cylindrical shell. The second prob-
lem involves the collapse of a truncated conical rubber shell, and the
third example involves the bifurcation problem of a strip subject to an

in-plane load. Moreover, the method is applied to the modelling of a
snapping metamaterial to investigate its performance on a larger-scale
problem. In all examples, it can be observed that the APALM provides
an accurate description of the reference solution, given a (sufficiently)
coarse serial initialization of the curve. Through refinement, the APALM
provides refinements (hence details in the solution), typically on sharp
corners in the load-displacement diagrams. In addition, the bifurca-
tion example also shows that the APALM is able to work within an
exploration scheme for bifurcations. In all benchmark problems, the
ASPALM and APALM have been used to evaluate the parallelization of
the schemes. The natural separation of the serial and parallel stages

H.M. Verhelst, J.H. Den Besten, and M. Möller (2024) An adaptive parallel arc-length method, Computers & Structures 296:107300

Example: snapping meta-material

■ DelftBlue: Intel Xeon Gold 6248R, 24 cores @ 3.0 GHz

H.M. Verhelst, J.H. Den Besten, and M. Möller (2024) An adaptive parallel arc-length method, Computers & Structures 296:107300

Computers and Structures 296 (2024) 107300

14

H.M. Verhelst, J.H. Den Besten and M. Möller

Fig. 13. Stress-strain diagram for the snapping meta-material from Fig. 12. The vertical axis depicts the equivalent stress 𝜎 = 𝜆𝑃∕(𝑏𝑊), and the horizontal axis
represents the strain 𝜀 = 𝑢𝑦∕𝐻 , where 𝑢𝑦 is the displacement of the top boundary Γ2 . The complete curve with the displacement-controlled (DC) results, the points
obtained in serial initialization, and the line obtained by parallel corrections are presented on the left. The figures on the right present the points from different
hierarchical levels at the inset depicted in the left diagram. The simulation is performed with a tolerance of 𝜀𝑙 = 𝜀𝑢 = 10−3 and an increment length of Δ𝐿 = 0.05.

Table 5
Computational time in [s] for the example of the snapping meta-
material for the ASPALM and APALM for different numbers of
worker processes. The computational time for a displacement-
controlled (DC) simulation with step Δ𝑢𝑦 = 0.0005 [𝑚𝑚] is pro-
vided as a reference. The times for the ASPALM are presented
for the serial initialization and the parallel correction phases,
and the sum of the two is given as the total computational time.
The numbers in the Serial column should theoretically be the
same, but they provide a representation of the variation in the
time measurements. The italic row with 0 workers denotes the
ASALM method.

Workers ASPALM APALM DC
Serial + Parallel = Total Parallel Serial
0 1,571.6 5,204.8 6,776.4 7,022.9 4,400.8
1 1,686.9 4,593.2 6,280.1 5,319.1
2 1,237.5 3,005.9 4,243.4 3,827.9
4 1,742.7 1,548.2 3,290.9 2,137.3
8 1,445.4 717.4 2,162.8 1,711.8
16 1,931.1 352.2 2,283.3 1,632.9
32 1,746.9 219.7 1,966.6 1,755.6

of the ASPALM reveals the scalability of the parallel correction with re-
spect to the number of workers, showing that the parallel correction can
take only a fraction of the total computational time for a larger num-
ber of workers. Furthermore, the comparison between the ASPALM and
the APALM shows that the full parallelization of the APALM provides
a more efficient scheme than the two-stage approach of the ASPALM,
as expected. The benchmarks and example also show that the APALM
provides a full solution curve – including adaptive refinements – in the
same computational time needed to compute only the initialisation of
the ASPALM. This reveals the potential of the APALM: it can provide de-
tailed solution paths without significantly increasing the computational
time. The coarser the initial step size, the more arc-length intervals are
computed during the parallel corrections of the method until a suffi-
cient; hence, the higher the computational merit of the method to reach
a desired level of detail. Moreover, the scaling analyses also show that
the benefits of the APALM are already achieved with a small number of
workers, e.g., 8 workers, making the APALM interesting on a desktop
scale. For larger clusters, the APALM can be employed using dynamic
load balancing within OpenMP.

As the APALM enables parallelization in the arc-length domain,
future applications of this method include quasi-static computations
for solid and fluid dynamics, among other problems, especially those
with a large number of load steps. Therefore, future works with this
method include automatic exploration of solution spaces, e.g., follow-
ing the work of [8,9], or applications with large numbers of degrees

of freedom, for instance with phase-field models for fracture mechanics
[34]. Other future work includes combining the APALM with a spatial
refinement scheme to enable space-quasi-time refinements. MPI scal-
ability and distribution of cores per worker are topics to investigate
for different applications. Another topic for further investigation is the
convergence of the underlying arc-length method for large steps. Since
a fewer number of initial intervals reduces the serial initialization time
of the APALM, the parallel performance can be increased significantly
when the initial step size is maximized. For example, the Mixed In-
tegration Point (MIP) method increases the convergence of the ALM,
allowing for larger step sizes. The performance of the MIP is demon-
strated for isogeometric Kirchhoff–Love shells in [35–38]. Lastly, since
the presented APALM is developed for path-independent problems, an
extension to path-dependent problems is a natural direction for future
research.

CRediT authorship contribution statement

H.M. Verhelst: Conceptualization, Formal analysis, Investigation,
Methodology, Resources, Software, Validation, Visualization, Writing –
original draft, Writing – review & editing. J.H. Den Besten: Funding ac-
quisition, Project administration, Supervision, Writing – original draft,
Writing – review & editing. M. Möller: Funding acquisition, Project ad-
ministration, Supervision, Writing – original draft, Writing – review &
editing, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements

The authors are grateful for the financial support from Delft Univer-
sity of Technology.

Appendix A. Supplementary material

Supplementary material related to this article can be found online
at https://doi .org /10 .1016 /j .compstruc .2024 .107300.

Lessons learned

■ MPI can be used for “task-based” dynamic parallelisation based on a task queue

■ The code was parallelised via OpenMP (assembly, solve, etc.) so that the number of MPI processes per
compute node was chosen to be smaller (e.g., 1-4) than the total number of compute cores so that each
MPI process could solve the problem instance with 6-8 OpenMP threads

