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Today’s talk

■ Case studies of using OpenMP / MPI 

• Brute-force QUBO sampler 

• Parallel-in-time method in G+Smo  

• Parallel Arc-Length method in G+Smo



Brute-force QUBO sampler

■ Problem: Given a symmetric real-valued matrix 
 find a bit string  such that 

   or  

 

■ Challenge: There are  different bit strings that 
need to be tested to find the global minimum 

■ Approach: Quantum annealers (D-Wave) are 
designed to solve this problem efficiently.  
 
However, for developing QUBO formulations we 
need an efficient brute-force sampler that can 
produce the full energy landscape efficiently.

Q ∈ ℝn×n x ∈ {0,1}n

x* = minargx∈{0,1}n x⊤Qx
e* = minx∈{0,1}n x⊤Qx

2n



Brute-force QUBO sampler

■ Data structures:  

• : histogram( ) 

• : array of  samples 

■ Sequential algorithm: 

• For   

• create  and compute   

• increment the counter of the corresponding 
“energy bin” by one and insert  into array of 
best samples if appropriate (sorting!)

H Emin, Emax, Nbins

S Nbest

i = 0,…,2n − 1

xi ∈ {0,1}n ei = x⊤
i Qxi

ei



Implementation details

■ C++20 compute kernel with PyBind11 wrapper 

■ Linear algebra library 

• :  Eigen::SparseMatrix<T, Eigen::ColMajor> or  
   Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> 

• :   Eigen::Vector<T, Eigen::Dynamic> 

■ MPI parallelization 

• Each rank has its own histogram  and array , computes  
 
T energy = (x.cwiseProduct(Q*x)).colwise().sum()[0]; 
 
and updates  and potentially 

Q

x

H S

H S



Implementation details

struct Histogram { 
  Histogram(…) {…} 
  std::vector<std::size_t> bins; 
  std::vector<double>      values; 
}; 

// reduce global histogram from all MPI processes 
Histogram global_hist(binCount, minValue, maxValue); 
MPI_Allreduce(hist.bins.data(), global_hist.bins.data(), 
              binCount, MPI_UNSIGNED_LONG_LONG, MPI_SUM, MPI_COMM_WORLD); 

// we don’t have to allreduce hist.values because they are the same for all 
// copies and are set by the constructor 



Implementation details

struct Samples { 
  Samples(…) {…} 
  std::vector<std::pair<double, std::size_t>> samples; 
}; 

MPI_Aint baseaddr, addr, displacement[2]; 
MPI_Get_address (&samples.samples.data()->first, &baseaddr); 
MPI_Get_address (&samples.samples.data()->second, &addr); 
displacement[0] = 0; displacement[1] = addr - baseaddr; 

MPI_Datatype datatype[2];  
datatype[0] = MPI_DOUBLE; datatype[1] = MPI_UNSIGNED_LONG_LONG; 

int blocklength[2]; blocklength[0] = 1; blocklength[1] = 1; 

MPI_Datatype MPI_PAIR; 
MPI_Type_create_struct(2, blocklength, displacement, datatype, &MPI_PAIR); 
MPI_Type_commit(&MPI_PAIR);



Implementation details

// reduce samples from all MPI processes 
Samples global_samples(nprocs * nsamples); 
MPI_Allgather(samples.samples.data(), nsamples, MPI_PAIR, 
              global_samples.samples.data(), nsamples, MPI_PAIR, MPI_COMM_WORLD); 

// sort and resize samples from all MPI processes 
std::sort(global_samples.samples.begin(), global_samples.samples.end(), 
          [](const auto& lhs, const auto& rhs) 
            { return lhs.first < rhs.first; }); 

while (global_samples.samples.size() > nsamples) 
  global_samples.samples.pop_back();



Scalability: N=26, 67.108.864 bit strings, 15% fill

MPI Runtime Parallel runtime

1 19.57 19.57

2 7.61 - 9.52 18.95

4 3.80 - 4.75 18.70

8 1.89 - 2.37 18.24

16 0.94 - 1.20 17.58

32 0.47 - 0.60 17.31

64 0.23 - 0.24 19.55

128 0.11 - 0.13 54.72

192 0.11 - 0.12 45.55

Python kills performance 

■ Long startup times (import) 

■ GIL hinders effective OpenMP 



Lessons learned

■ Close to optimal scaling up to 128 cores per node for compute-bound nearly data-less problem 

■ User-defined MPI datatypes can be used to perform MPI operations on C++ datatypes 

■ DON’T USE PYTHON FOR PARALLEL PROGRAMMING 

Not discussed here 

■ Since the QUBO matrix is the same for all processes, we implemented a MPI+OpenMP variant with 1-2 
MPI process(es) per node and multiple OpenMP threads per MPI process (user-defined OpenMP 
reduction, atomic updates of  and ). Works outside Python but is limited by GIL.H S



G+Smo - Geometry plus Simulation Modules

■ Open-source (MLP-2.0) isogeometric analysis library written in C++11 on top of the Eigen library 

■ Developers & users: Inria, TU Delft, JKU, RICAM, UoFlorence, MTU AeroEngines, Vtech CMCC, … 

■ Features: 

• OpenMP parallelization (WIP), MPI parallelization (demonstrator apps + external libraries) 

• Wrappers for Python (PyBind11), Julia (WIP), Matlab (WIP) 

• External libraries: OpenNurbs, Pardiso, Trilions, Spectra, CoDiPack, … 

• Import/export formats: XML, VTK, 3dm, …



Typical applications

■ Geometric modelling with adaptive splines 

■ Simulation of linear/nonlinear PDE problems 

■ PDE-constrained shape/topology optimization



Sequential time integrators

■ Model problem 

 

■ Explicit time integrators 

 

■ Implicit time integrators 

du(t)
dt

= A(u(t), t), u(t = 0) = u0

un+1 − un

Δt
= A(un, tn) ⇒ un+1 = un + ΔtA(un, tn), un := u(tn)

un+1 − un

Δt
= A(un+1, tn+1) ⇒ un+1 − ΔtA(un+1, tn+1) = un



Parallel-in-time integrators
Part II: Multigrid reduction in time (MGRIT)
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S. Friedho�, et al. A Multigrid-in-Time Algorithm for Solving Evolution Equations in Parallel, 16th

Copper Mountain Conference on Multigrid Methods 2013.
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Sketch of the parallel-in-time algorithm 

■ Writing out the two-level time integration scheme  for all time levels yields 

 

■ Reordering of the system matrix (and the vectors!) into ine and oarse time levels yields 

[M + ΔtFK]un+1 = Mun + f

I
−ΨM I

⋱ ⋱
−ΨM I

u0

u1

⋮
uN

= ΔtF

Ψf
Ψf
⋮

Ψf

with Ψ = [M + ΔtFK]−1

F C

[AFF AFC

ACF ACC] = [
IF 0

ACFA−1
FF IC] [AFF 0

0 S] [IF A−1
FFAFC

0 IC ] with S = ACC − ACFA−1
FFAFC

S. Friedhoff, et al. A Multigrid-in-Time Algorithm for Solving Evolution Equations in Parallel, 16th Copper Mountain Conference on Multigrid Methods 2013.



Sketch of the parallel-in-time algorithm 

■ Approximation of the Schur complement matrix 

 

■ Approximate coarse integrator 

 

■ Repeat this two-level recursion to obtain MGRIT (multi-grid-in-time)

S =

I
−(ΨM)m I

⋱ ⋱
−(ΨM)m I

≈
I

−ΦM I
⋱ ⋱

−ΦM I

Φ = [M + ΔtC K]−1

S. Friedhoff, et al. A Multigrid-in-Time Algorithm for Solving Evolution Equations in Parallel, 16th Copper Mountain Conference on Multigrid Methods 2013.

The MGRIT-IGA V-cycle

l = 0 �t

l = 1 �tm

l = 2 �tm2

l = 3 �tm3

l = 4 �tm4

relaxation exact solve restriction interpolation
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Strong scaling

■ 2d heat equation with  spatial resolution solved for  time steps using the backward 
Euler scheme and IGA discretisation on 128 Xeon Gold 6130 CPUs (2.10GHz, 96GB, 16 cores)

h = 2−6 Nt = 10.000Numerical examples: Strong scaling of MGRIT-IGA

#5: Heat-Eq with h = 2≠6 spatial resolution solved for Nt = 10.000 time steps with
backward Euler method on 128 Xeon Gold 6130 CPUs (2.10GHz, 96GB, 16 cores)
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Weak scaling

■ 2d heat equation with  spatial resolution solved for  time steps using the 
backward Euler scheme and IGA discretisation on 128 Xeon Gold 6130 CPUs (2.10GHz, 96GB, 16 cores)

h = 2−6 Nt = #cores/64 ⋅ 1.000

R. Tielen, M. Möller, and C. Vuik (2022) Combining p-multigrid and multigrid reduction in time methods to obtain a scalable solver for isogeometric analysis, SN Appl. Sci. 4

Numerical examples: Weak scaling of MGRIT-IGA

#5: Heat-Eq with h = 2≠6 spatial resolution solved for Nt = cores/64 · 1.000 time steps
with backward Euler method on 128 Xeon Gold 6130 CPUs (2.10GHz, 96GB, 16 cores)
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Lessons learned

■ Sequential processes like time integration can be parallelised using parallel-in-time methods 

■ Sufficient number of MPI processes is required to compensate the computational/mathematical overhead 

■ Rest of the math (and implementation) needs to be right as well 

• Large  lead to unstable explicit integrators  use (semi-)implicit time integrators 

• Stationary problems need to be solved efficiently (PhD Thesis by Roel Tielen) 

• It’s very difficult to utilise many-core CPUs efficiently for memory-bound problems

ΔtC ⇒



Snapping meta-material simulation

H.M. Verhelst, J.H. Den Besten, and M. Möller (2024) An adaptive parallel arc-length method, Computers & Structures 296:107300



Arc-length method (ALM)

■ Nonlinear system of equations 

 

•  is the displacement vector computed by some PDE problem 

•  is the vector of internal forces depending on  

•  is a scaling factor for the applied load   

■ Task: find the load-response curve  

■ Challenges: bifurcation points, convergence problems, find  
the full load-response path not a set of discrete points, …

G(u, λ) = N(u) − λP = 0

u

N(u) u

λ P

{(u, λ) : G(u, λ) = 0}

Computers and Structures 296 (2024) 107300
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Fig. 9. Results of the collapsing truncated cone. The figure on the left depicts the full solution path, and the figure on the right depicts the inset indicated in the left 
figure. The reference and serial solutions are represented by the solid line and the black markers, respectively. The solutions computed by the APALM are indicated 
per level. The simulation is performed with a tolerance of 𝜀𝑙 = 𝜀𝑢 = 10−2 and an increment length of Δ𝐿 = 0.5.

Table 3
Computational time in [s] for the benchmark of the collapsing truncated cone for the ASPALM and 
APALM for different numbers of worker processes. The times for the ASPALM are presented for the 
serial initialization and the parallel correction phases, and the sum of the two is given as the total 
computational time. The numbers in the Serial column should theoretically be the same, but they provide 
a representation of the variation in the time measurements. The results are presented for simulations 
with increment lengths Δ𝐿 = 0.5 (a) and Δ𝐿 = 0.0625 (b), and the italic row with 0 workers denotes the 
ASALM method.

(a) Δ𝐿 = 0.5
Workers ASPALM APALM
# Serial + Parallel = Total Parallel
0 160.2 244.0 404.2 436.6
1 162.5 247.2 409.7 424.8
2 169.5 130.1 299.6 207.1
4 170.6 68.1 238.7 172.9
8 162.6 43.0 205.6 160.5
16 175.3 32.0 207.3 173.3
32 175.5 27.3 202.8 170.8
64 170.1 23.3 193.4 169.5

(b) Δ𝐿 = 0.0625
Workers ASPALM APALM
# Serial + Parallel = Total Parallel
0 499.7 2,575.9 3,075.6 3,055.3
1 467.5 2,232.5 2,700.0 2,783.8
2 496.3 1,337.0 1,833.2 1,573.4
4 467.8 654.4 1,122.2 789.5
8 490.1 322.6 812.7 489.4
16 467.6 167.6 635.1 496.0
32 494.1 97.1 591.1 483.9
64 491.4 55.7 547.1 493.6
128 485.0 41.5 526.5 494.5
256 493.8 32.9 526.7 491.4
512 491.8 25.8 517.6 488.5

time when using 64 workers. When using the APALM scheme, the col-
lapsing cone also shows that the computation times of the APALM are 
similar to the times needed for serial initialization, in other words, a 
classical ALM without adaptive corrections. When the number of inter-
vals is increased, i.e., when the arc-length parameter is decreased to 
Δ𝐿 = 0.0625 (Table 3b), the scalability of the parallel phase of the AS-
PALM and of the full APALM reaches further, up to 64 workers.

5.3. Strip buckling

The third example involves a benchmark problem consisting of a bi-
furcation instability. The problem consists of a flat strip that is clamped 
on one edge and free on all the others, with an in-plane compressive 
load applied on the free end opposite to the clamped edge; see Fig. 10
for the problem set-up and [32] for the reference results. The ALM that 
is used is a Crisfield method with Ψ = 0, with a pre-buckling arc-length 
of 5 ⋅10−5, a post-buckling arc-length of 5, and a tolerance of the APALM 
of 𝜀𝑙 = 𝜀𝑢 = 10−3. The serial ALM is equipped with an extension for the 
computation of singular points (Wriggers 1988); see [33] for more de-
tails on this implementation. Using these methods, an initially flat strip 
is compressed until the bifurcation point has been computed. As soon 
as the strip becomes unstable, the bifurcation point is computed, and 
a branch switch is performed, marking the transition between the pre-
buckling and post-buckling branches.

The results for the buckled strip are presented in Fig. 11. In this fig-
ure, the non-dimensional horizontal and vertical displacements of the 
end point are plotted with respect to the non-dimensional applied load. 
In the plots, the pre- and post-buckling branches are plotted separately 
for clarity, but the branches should obviously be connected at the bi-
furcation point. As can be seen from the results, a rather coarse serial 
approximation of the post-buckling branch gives a good starting point 
for a multi-level approximation of the curve, providing additional detail 
in the sharp corner in 𝑊 ∕𝐿 ∈ [0.7, 0.8]. In addition, it can be seen that 
the pre-buckling branch requires no more levels than the first, as the 
behaviour there is just a linear axial compression, hence the solution 
path is straight.

As for the previous two benchmark examples, a scaling analysis of 
the parallel evaluations is performed. The main difference between the 
previous two examples is that the present example involves a bifur-
cation point. However, since the job queue includes the jobs from all 
branches together, there is no idle time to wait for a branch to fin-
ish before starting a new branch; hence, it is expected that the parallel 
scaling for a bifurcation problem should have the same scaling prop-
erties. Indeed, Table 4a shows that optimal scaling is achieved in the 
parallel correction phase of the ASPALM up to 8 nodes, after which 
the idle time to wait for the last job to finish significantly impacts the 
scaling, as observed in the other benchmarks. In addition, it is found 
that the APALM reaches efficient computation of the full adaptive load-

Computers and Structures 296 (2024) 107300
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Fig. 9. Results of the collapsing truncated cone. The figure on the left depicts the full solution path, and the figure on the right depicts the inset indicated in the left 
figure. The reference and serial solutions are represented by the solid line and the black markers, respectively. The solutions computed by the APALM are indicated 
per level. The simulation is performed with a tolerance of 𝜀𝑙 = 𝜀𝑢 = 10−2 and an increment length of Δ𝐿 = 0.5.

Table 3
Computational time in [s] for the benchmark of the collapsing truncated cone for the ASPALM and 
APALM for different numbers of worker processes. The times for the ASPALM are presented for the 
serial initialization and the parallel correction phases, and the sum of the two is given as the total 
computational time. The numbers in the Serial column should theoretically be the same, but they provide 
a representation of the variation in the time measurements. The results are presented for simulations 
with increment lengths Δ𝐿 = 0.5 (a) and Δ𝐿 = 0.0625 (b), and the italic row with 0 workers denotes the 
ASALM method.

(a) Δ𝐿 = 0.5
Workers ASPALM APALM
# Serial + Parallel = Total Parallel
0 160.2 244.0 404.2 436.6
1 162.5 247.2 409.7 424.8
2 169.5 130.1 299.6 207.1
4 170.6 68.1 238.7 172.9
8 162.6 43.0 205.6 160.5
16 175.3 32.0 207.3 173.3
32 175.5 27.3 202.8 170.8
64 170.1 23.3 193.4 169.5

(b) Δ𝐿 = 0.0625
Workers ASPALM APALM
# Serial + Parallel = Total Parallel
0 499.7 2,575.9 3,075.6 3,055.3
1 467.5 2,232.5 2,700.0 2,783.8
2 496.3 1,337.0 1,833.2 1,573.4
4 467.8 654.4 1,122.2 789.5
8 490.1 322.6 812.7 489.4
16 467.6 167.6 635.1 496.0
32 494.1 97.1 591.1 483.9
64 491.4 55.7 547.1 493.6
128 485.0 41.5 526.5 494.5
256 493.8 32.9 526.7 491.4
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time when using 64 workers. When using the APALM scheme, the col-
lapsing cone also shows that the computation times of the APALM are 
similar to the times needed for serial initialization, in other words, a 
classical ALM without adaptive corrections. When the number of inter-
vals is increased, i.e., when the arc-length parameter is decreased to 
Δ𝐿 = 0.0625 (Table 3b), the scalability of the parallel phase of the AS-
PALM and of the full APALM reaches further, up to 64 workers.

5.3. Strip buckling

The third example involves a benchmark problem consisting of a bi-
furcation instability. The problem consists of a flat strip that is clamped 
on one edge and free on all the others, with an in-plane compressive 
load applied on the free end opposite to the clamped edge; see Fig. 10
for the problem set-up and [32] for the reference results. The ALM that 
is used is a Crisfield method with Ψ = 0, with a pre-buckling arc-length 
of 5 ⋅10−5, a post-buckling arc-length of 5, and a tolerance of the APALM 
of 𝜀𝑙 = 𝜀𝑢 = 10−3. The serial ALM is equipped with an extension for the 
computation of singular points (Wriggers 1988); see [33] for more de-
tails on this implementation. Using these methods, an initially flat strip 
is compressed until the bifurcation point has been computed. As soon 
as the strip becomes unstable, the bifurcation point is computed, and 
a branch switch is performed, marking the transition between the pre-
buckling and post-buckling branches.

The results for the buckled strip are presented in Fig. 11. In this fig-
ure, the non-dimensional horizontal and vertical displacements of the 
end point are plotted with respect to the non-dimensional applied load. 
In the plots, the pre- and post-buckling branches are plotted separately 
for clarity, but the branches should obviously be connected at the bi-
furcation point. As can be seen from the results, a rather coarse serial 
approximation of the post-buckling branch gives a good starting point 
for a multi-level approximation of the curve, providing additional detail 
in the sharp corner in 𝑊 ∕𝐿 ∈ [0.7, 0.8]. In addition, it can be seen that 
the pre-buckling branch requires no more levels than the first, as the 
behaviour there is just a linear axial compression, hence the solution 
path is straight.

As for the previous two benchmark examples, a scaling analysis of 
the parallel evaluations is performed. The main difference between the 
previous two examples is that the present example involves a bifur-
cation point. However, since the job queue includes the jobs from all 
branches together, there is no idle time to wait for a branch to fin-
ish before starting a new branch; hence, it is expected that the parallel 
scaling for a bifurcation problem should have the same scaling prop-
erties. Indeed, Table 4a shows that optimal scaling is achieved in the 
parallel correction phase of the ASPALM up to 8 nodes, after which 
the idle time to wait for the last job to finish significantly impacts the 
scaling, as observed in the other benchmarks. In addition, it is found 
that the APALM reaches efficient computation of the full adaptive load-
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Sequential ALM

■ Start with  such that  and compute the next increment  such 
that  by solving the nonlinear problem using Newton’s method (for ) 

■ Scenario’s 

• Load control: fix  and compute  

• Displacement control: fix  and compute  

• Arc-length control: fix  and compute  and   
simultaneously such that 
 
   

w0 := (u0, λ0) G(w0) = 0 Δwi = (Δui, Δλi)
G(wi+1 = wi + Δwi) = 0 i = 1,2,…

λ u

u λ

Δℓ λ u

f(Δu, Δλ) = Δu⊤Δu + Ψ2Δλ2P⊤P − Δℓ = 0
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Fig. 1. Load (left), displacement (middle), and arc-length control (right) for structural analysis problems. The question mark (?) indicates the iteration where load 
and displacement control encounter a limit point. In these situations, the next point obtained is typically difficult to find.

the training of neural networks [12] and [13]. Alternative methods for 
parallel time integration are reviewed in the work of [2].

Compared to temporal parallelization methods, parallelization of 
ALMs has received less attention in the academic community. As ALMs 
are typically used for explorations of solutions across branches, par-
allel evaluation of branches can be performed as soon as the starting 
point (and tangent) of each branch is known. The number of branches 
related to a problem, however, depends typically on the problem that 
is solved; hence, the parallel scalability of ALMs over branches is not 
guaranteed. Parallelization within a branch is enabled by the Parallel 
Adaptive Method for Pseudo-Arclength Continuation (PAMPAC) [14]. 
This method works with multiple predictors (with different step sizes) 
and consequently correctors to select an optimal step size, which can 
be performed in parallel. The PAMPAC method focuses on selecting a 
maximal step size for the ALM for which the method does not converge.

In this paper, a parallelization of the arc-length method is presented 
that is independent of the physical nature of the underlying problem. 
That is, the method is developed such that the parallelization can be 
performed within the branches. In addition to parallelization, the pre-
sented arc-length scheme also provides inherent adaptivity; therefore, 
the method is referred to as the Adaptive Parallel Arc Length Method 
(APALM). The working principle of the APALM is based on a multi-level 
approach – inspired by MGRIT methods – where a coarse serial ap-
proximation of the solution space is refined in parallel until a measure 
of convergence is achieved. Contrary to PAMPAC, the present method 
does not maximise the step size for convergence of the ALM iterations, 
but instead the parallelization is based on convergence of the solution 
sub-intervals. Without loss of generality, the method is developed given 
a constraint equation for the arc-length method; thus, it is generalised 
for the Riks and Crisfield methods, amongst other methods available.

The outline of this paper is as follows: Section 2 provides a back-
ground on arc-length methods. In section 3, the parallelization of arc-
length methods is presented, referred to as the APALM. Thereafter, 
section 4 provides algorithms for non-intrusive implementation of the 
APALM, given an implementation of an existing ALM. Section 5 pro-
vides numerical benchmark problems and an application to the analysis 
of a snapping meta-material, inspired by [15]. Finally, section 6 pro-
vides conclusions on the presented method.

2. Arc-length methods

In this section, the concept of arc-length methods is presented for 
the sake of completeness. For a detailed overview, one can consult ref-
erences [3,4,16,17]. Let 𝑮(𝒖, 𝜆) = 𝟎 be a non-linear system of equations 
to be solved, with 𝒖 the solution to the system of equations given a 
parameter 𝜆. For structural analyses, 𝒖 is typically a vector contain-
ing discrete displacements of the degrees of freedom, and 𝜆 is a factor 
scaling the magnitude of an applied load 𝑃 , i.e.

𝑮(𝒖,𝜆) =𝑵(𝒖)− 𝜆𝑷 , (1)

where 𝑵(𝒖) is a vector of internal forces, depending on the defor-
mation 𝒖. For incremental analyses, i.e., quasi-static analyses, a se-
ries of solutions 𝒘𝑖 = (𝒖𝑖, 𝜆𝑖) is obtained by computing increments 
Δ𝒘𝑖 = (Δ𝒖𝑖, Δ𝜆𝑖) such that 𝒘𝑖+1 =𝒘𝑖 + Δ𝒘𝑖 and equation (1) is satis-
fied for 𝒘𝑖+1. These solutions can be obtained by Newton iterations: i) 
fixing 𝜆 and finding 𝒖 (load control); ii) fixing some degrees of freedom 
in 𝒖 and finding all 𝒖 and 𝜆 (displacement control); or iii) constraining 
𝜆 and 𝒖 and solving for both (arc-length control); see Fig. 1. In the case 
of arc-length control, the increment Δ𝒘 is measured by an increment 
length 𝑑(Δ𝒘)

𝑑(Δ𝒘) =Δ𝒖⊤Δ𝒖+Ψ2Δ𝜆2𝑷 ⊤𝑷 , (2)
where Ψ is a scaling parameter given in [18,19]. The increment Δ𝒘 is 
constrained by the arc-length Δ𝓁 in the constraint equation

𝑓 (Δ𝒘) = 𝑑(Δ𝒘)−Δ𝓁 = 0. (3)
Since 𝑮(𝒖, 𝜆) is non-linear, the increment Δ𝒘𝑖 is obtained iteratively, 
i.e., Δ𝒘𝑖,𝑘+1 =Δ𝒘𝑖,𝑘 + 𝛿𝒘𝑖 with iteration count 𝑘. The constraint equa-
tion is solved together with equation (1) in every iteration, yielding the 
Riks and Crisfield methods [3,4]

𝑓 (Δ𝒘𝑖,𝑘,Δ𝑙) =Δ𝒖⊤𝑖,0Δ𝒖𝑖,𝑘 +Ψ2Δ𝜆𝑖,0Δ𝜆𝑖,0𝑷 ⊤𝑷 −Δ𝓁2 = 0, Riks, (4)
𝑓 (Δ𝒘𝑖,𝑘,Δ𝑙) =Δ𝒖⊤𝑖,𝑘Δ𝒖𝑖,𝑘 +Ψ2Δ𝜆𝑖,𝑘Δ𝜆𝑖,𝑘𝑷 ⊤𝑷 −Δ𝓁2 = 0, Crisfield,

(5)
where Δ𝒘0 is the increment in the first iteration. The Crisfield method 
generally performs well with sharp snap-backs but has the disadvantage 
that the constraint equation has two intersections with the path formed 
by equation (1). Hence, a root has to be selected, which is elaborated in 
the works [4,16]. When multiple intersections are found, complex roots 
are found [20], which can be resolved using one of the methods pro-
posed in [21,22]. It should be noted that any other arc-length method 
can be used within the scheme proposed in this paper, as long as the 
constraint equation is satisfied when the arc-length step is converged.

3. Adaptive parallel arc-length method

In this section, our new approach, the APALM, is presented. Firstly, 
the method is conceptualised along with some illustrative figures (sec-
tion 3.1). Secondly, details are provided on the curve parameterization 
and the measurement of errors (section 3.2). Lastly, section 3.3 presents 
(re-)parameterization methods for the solution curve. These parameter-
izations will be essential to the data structure of the APALM. It should 
be noted that the method described in this section is presented only for 
one continuation parameter, 𝜆.

3.1. Concept

Learning from parallel-in-time methods like Parareal or MGRIT, par-
allelization in the APALM is achieved from a subdivision of the curve 
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Fig. 1. Load (left), displacement (middle), and arc-length control (right) for structural analysis problems. The question mark (?) indicates the iteration where load 
and displacement control encounter a limit point. In these situations, the next point obtained is typically difficult to find.

the training of neural networks [12] and [13]. Alternative methods for 
parallel time integration are reviewed in the work of [2].

Compared to temporal parallelization methods, parallelization of 
ALMs has received less attention in the academic community. As ALMs 
are typically used for explorations of solutions across branches, par-
allel evaluation of branches can be performed as soon as the starting 
point (and tangent) of each branch is known. The number of branches 
related to a problem, however, depends typically on the problem that 
is solved; hence, the parallel scalability of ALMs over branches is not 
guaranteed. Parallelization within a branch is enabled by the Parallel 
Adaptive Method for Pseudo-Arclength Continuation (PAMPAC) [14]. 
This method works with multiple predictors (with different step sizes) 
and consequently correctors to select an optimal step size, which can 
be performed in parallel. The PAMPAC method focuses on selecting a 
maximal step size for the ALM for which the method does not converge.

In this paper, a parallelization of the arc-length method is presented 
that is independent of the physical nature of the underlying problem. 
That is, the method is developed such that the parallelization can be 
performed within the branches. In addition to parallelization, the pre-
sented arc-length scheme also provides inherent adaptivity; therefore, 
the method is referred to as the Adaptive Parallel Arc Length Method 
(APALM). The working principle of the APALM is based on a multi-level 
approach – inspired by MGRIT methods – where a coarse serial ap-
proximation of the solution space is refined in parallel until a measure 
of convergence is achieved. Contrary to PAMPAC, the present method 
does not maximise the step size for convergence of the ALM iterations, 
but instead the parallelization is based on convergence of the solution 
sub-intervals. Without loss of generality, the method is developed given 
a constraint equation for the arc-length method; thus, it is generalised 
for the Riks and Crisfield methods, amongst other methods available.

The outline of this paper is as follows: Section 2 provides a back-
ground on arc-length methods. In section 3, the parallelization of arc-
length methods is presented, referred to as the APALM. Thereafter, 
section 4 provides algorithms for non-intrusive implementation of the 
APALM, given an implementation of an existing ALM. Section 5 pro-
vides numerical benchmark problems and an application to the analysis 
of a snapping meta-material, inspired by [15]. Finally, section 6 pro-
vides conclusions on the presented method.

2. Arc-length methods

In this section, the concept of arc-length methods is presented for 
the sake of completeness. For a detailed overview, one can consult ref-
erences [3,4,16,17]. Let 𝑮(𝒖, 𝜆) = 𝟎 be a non-linear system of equations 
to be solved, with 𝒖 the solution to the system of equations given a 
parameter 𝜆. For structural analyses, 𝒖 is typically a vector contain-
ing discrete displacements of the degrees of freedom, and 𝜆 is a factor 
scaling the magnitude of an applied load 𝑃 , i.e.

𝑮(𝒖,𝜆) =𝑵(𝒖)− 𝜆𝑷 , (1)

where 𝑵(𝒖) is a vector of internal forces, depending on the defor-
mation 𝒖. For incremental analyses, i.e., quasi-static analyses, a se-
ries of solutions 𝒘𝑖 = (𝒖𝑖, 𝜆𝑖) is obtained by computing increments 
Δ𝒘𝑖 = (Δ𝒖𝑖, Δ𝜆𝑖) such that 𝒘𝑖+1 =𝒘𝑖 + Δ𝒘𝑖 and equation (1) is satis-
fied for 𝒘𝑖+1. These solutions can be obtained by Newton iterations: i) 
fixing 𝜆 and finding 𝒖 (load control); ii) fixing some degrees of freedom 
in 𝒖 and finding all 𝒖 and 𝜆 (displacement control); or iii) constraining 
𝜆 and 𝒖 and solving for both (arc-length control); see Fig. 1. In the case 
of arc-length control, the increment Δ𝒘 is measured by an increment 
length 𝑑(Δ𝒘)

𝑑(Δ𝒘) =Δ𝒖⊤Δ𝒖+Ψ2Δ𝜆2𝑷 ⊤𝑷 , (2)
where Ψ is a scaling parameter given in [18,19]. The increment Δ𝒘 is 
constrained by the arc-length Δ𝓁 in the constraint equation

𝑓 (Δ𝒘) = 𝑑(Δ𝒘)−Δ𝓁 = 0. (3)
Since 𝑮(𝒖, 𝜆) is non-linear, the increment Δ𝒘𝑖 is obtained iteratively, 
i.e., Δ𝒘𝑖,𝑘+1 =Δ𝒘𝑖,𝑘 + 𝛿𝒘𝑖 with iteration count 𝑘. The constraint equa-
tion is solved together with equation (1) in every iteration, yielding the 
Riks and Crisfield methods [3,4]

𝑓 (Δ𝒘𝑖,𝑘,Δ𝑙) =Δ𝒖⊤𝑖,0Δ𝒖𝑖,𝑘 +Ψ2Δ𝜆𝑖,0Δ𝜆𝑖,0𝑷 ⊤𝑷 −Δ𝓁2 = 0, Riks, (4)
𝑓 (Δ𝒘𝑖,𝑘,Δ𝑙) =Δ𝒖⊤𝑖,𝑘Δ𝒖𝑖,𝑘 +Ψ2Δ𝜆𝑖,𝑘Δ𝜆𝑖,𝑘𝑷 ⊤𝑷 −Δ𝓁2 = 0, Crisfield,

(5)
where Δ𝒘0 is the increment in the first iteration. The Crisfield method 
generally performs well with sharp snap-backs but has the disadvantage 
that the constraint equation has two intersections with the path formed 
by equation (1). Hence, a root has to be selected, which is elaborated in 
the works [4,16]. When multiple intersections are found, complex roots 
are found [20], which can be resolved using one of the methods pro-
posed in [21,22]. It should be noted that any other arc-length method 
can be used within the scheme proposed in this paper, as long as the 
constraint equation is satisfied when the arc-length step is converged.

3. Adaptive parallel arc-length method

In this section, our new approach, the APALM, is presented. Firstly, 
the method is conceptualised along with some illustrative figures (sec-
tion 3.1). Secondly, details are provided on the curve parameterization 
and the measurement of errors (section 3.2). Lastly, section 3.3 presents 
(re-)parameterization methods for the solution curve. These parameter-
izations will be essential to the data structure of the APALM. It should 
be noted that the method described in this section is presented only for 
one continuation parameter, 𝜆.

3.1. Concept

Learning from parallel-in-time methods like Parareal or MGRIT, par-
allelization in the APALM is achieved from a subdivision of the curve 
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parallel time integration are reviewed in the work of [2].
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ALMs has received less attention in the academic community. As ALMs 
are typically used for explorations of solutions across branches, par-
allel evaluation of branches can be performed as soon as the starting 
point (and tangent) of each branch is known. The number of branches 
related to a problem, however, depends typically on the problem that 
is solved; hence, the parallel scalability of ALMs over branches is not 
guaranteed. Parallelization within a branch is enabled by the Parallel 
Adaptive Method for Pseudo-Arclength Continuation (PAMPAC) [14]. 
This method works with multiple predictors (with different step sizes) 
and consequently correctors to select an optimal step size, which can 
be performed in parallel. The PAMPAC method focuses on selecting a 
maximal step size for the ALM for which the method does not converge.

In this paper, a parallelization of the arc-length method is presented 
that is independent of the physical nature of the underlying problem. 
That is, the method is developed such that the parallelization can be 
performed within the branches. In addition to parallelization, the pre-
sented arc-length scheme also provides inherent adaptivity; therefore, 
the method is referred to as the Adaptive Parallel Arc Length Method 
(APALM). The working principle of the APALM is based on a multi-level 
approach – inspired by MGRIT methods – where a coarse serial ap-
proximation of the solution space is refined in parallel until a measure 
of convergence is achieved. Contrary to PAMPAC, the present method 
does not maximise the step size for convergence of the ALM iterations, 
but instead the parallelization is based on convergence of the solution 
sub-intervals. Without loss of generality, the method is developed given 
a constraint equation for the arc-length method; thus, it is generalised 
for the Riks and Crisfield methods, amongst other methods available.

The outline of this paper is as follows: Section 2 provides a back-
ground on arc-length methods. In section 3, the parallelization of arc-
length methods is presented, referred to as the APALM. Thereafter, 
section 4 provides algorithms for non-intrusive implementation of the 
APALM, given an implementation of an existing ALM. Section 5 pro-
vides numerical benchmark problems and an application to the analysis 
of a snapping meta-material, inspired by [15]. Finally, section 6 pro-
vides conclusions on the presented method.

2. Arc-length methods

In this section, the concept of arc-length methods is presented for 
the sake of completeness. For a detailed overview, one can consult ref-
erences [3,4,16,17]. Let 𝑮(𝒖, 𝜆) = 𝟎 be a non-linear system of equations 
to be solved, with 𝒖 the solution to the system of equations given a 
parameter 𝜆. For structural analyses, 𝒖 is typically a vector contain-
ing discrete displacements of the degrees of freedom, and 𝜆 is a factor 
scaling the magnitude of an applied load 𝑃 , i.e.

𝑮(𝒖,𝜆) =𝑵(𝒖)− 𝜆𝑷 , (1)

where 𝑵(𝒖) is a vector of internal forces, depending on the defor-
mation 𝒖. For incremental analyses, i.e., quasi-static analyses, a se-
ries of solutions 𝒘𝑖 = (𝒖𝑖, 𝜆𝑖) is obtained by computing increments 
Δ𝒘𝑖 = (Δ𝒖𝑖, Δ𝜆𝑖) such that 𝒘𝑖+1 =𝒘𝑖 + Δ𝒘𝑖 and equation (1) is satis-
fied for 𝒘𝑖+1. These solutions can be obtained by Newton iterations: i) 
fixing 𝜆 and finding 𝒖 (load control); ii) fixing some degrees of freedom 
in 𝒖 and finding all 𝒖 and 𝜆 (displacement control); or iii) constraining 
𝜆 and 𝒖 and solving for both (arc-length control); see Fig. 1. In the case 
of arc-length control, the increment Δ𝒘 is measured by an increment 
length 𝑑(Δ𝒘)

𝑑(Δ𝒘) =Δ𝒖⊤Δ𝒖+Ψ2Δ𝜆2𝑷 ⊤𝑷 , (2)
where Ψ is a scaling parameter given in [18,19]. The increment Δ𝒘 is 
constrained by the arc-length Δ𝓁 in the constraint equation

𝑓 (Δ𝒘) = 𝑑(Δ𝒘)−Δ𝓁 = 0. (3)
Since 𝑮(𝒖, 𝜆) is non-linear, the increment Δ𝒘𝑖 is obtained iteratively, 
i.e., Δ𝒘𝑖,𝑘+1 =Δ𝒘𝑖,𝑘 + 𝛿𝒘𝑖 with iteration count 𝑘. The constraint equa-
tion is solved together with equation (1) in every iteration, yielding the 
Riks and Crisfield methods [3,4]

𝑓 (Δ𝒘𝑖,𝑘,Δ𝑙) =Δ𝒖⊤𝑖,0Δ𝒖𝑖,𝑘 +Ψ2Δ𝜆𝑖,0Δ𝜆𝑖,0𝑷 ⊤𝑷 −Δ𝓁2 = 0, Riks, (4)
𝑓 (Δ𝒘𝑖,𝑘,Δ𝑙) =Δ𝒖⊤𝑖,𝑘Δ𝒖𝑖,𝑘 +Ψ2Δ𝜆𝑖,𝑘Δ𝜆𝑖,𝑘𝑷 ⊤𝑷 −Δ𝓁2 = 0, Crisfield,

(5)
where Δ𝒘0 is the increment in the first iteration. The Crisfield method 
generally performs well with sharp snap-backs but has the disadvantage 
that the constraint equation has two intersections with the path formed 
by equation (1). Hence, a root has to be selected, which is elaborated in 
the works [4,16]. When multiple intersections are found, complex roots 
are found [20], which can be resolved using one of the methods pro-
posed in [21,22]. It should be noted that any other arc-length method 
can be used within the scheme proposed in this paper, as long as the 
constraint equation is satisfied when the arc-length step is converged.

3. Adaptive parallel arc-length method

In this section, our new approach, the APALM, is presented. Firstly, 
the method is conceptualised along with some illustrative figures (sec-
tion 3.1). Secondly, details are provided on the curve parameterization 
and the measurement of errors (section 3.2). Lastly, section 3.3 presents 
(re-)parameterization methods for the solution curve. These parameter-
izations will be essential to the data structure of the APALM. It should 
be noted that the method described in this section is presented only for 
one continuation parameter, 𝜆.

3.1. Concept

Learning from parallel-in-time methods like Parareal or MGRIT, par-
allelization in the APALM is achieved from a subdivision of the curve 
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Fig. 2. Concept of the APALM. The large open circles represent reference solutions from a previously computed level. The small solid circles represent new data on the 
interval between two reference solutions, computed by the arc-length method (here the large dashed circle). The black dashed line indicates the curve estimation 
for which the sum is equal to the total curve length.

length domain. Contrary to MGRIT and Parareal, where the temporal do-
main 𝑡 ∈ [𝑇0, 𝑇1] is fixed, the APALM will work with a changing curve 
length domain 𝑠 ∈ [𝑆0, 𝑆1] depending on the length of the traversed 
path, with an underlying fixed parametric domain with parametric co-
ordinate 𝜉 ∈ [0, 1]. The APALM is initialised with an initial coarse grid 
approximation, in which the parametric and the curve length domains 
are subdivided into sub-domains 𝜉 ∈ [𝜉𝑖, 𝜉𝑖+1] and 𝑠 ∈ [𝑠𝑖, 𝑠𝑖+1], respec-
tively, as illustrated in Fig. 2.

In the initialization phase of the APALM, the first subdivision into 
sub-intervals is made (see Fig. 2a). Here, the sizes of the sub-intervals 
𝑠 ∈ [𝑠𝓁𝑖 , 𝑠

𝓁
𝑖+1] are determined based on the distance measure that is 

used by the corresponding ALM; see equation (2). Note that the super-
script 𝓁 denotes the 𝓁th level. Based on the initial curve-length domain 
𝑠 ∈ [0, 𝑆], where 𝑆 is the total length of the initial curve, and the 
corresponding sub-intervals, the curve-length domain can be mapped 
accordingly onto a parametric domain; see section 4 for more details.

With an initialised computational domain, the number of sub-
intervals determines the degree of parallelization. On any sub-interval, 
[𝑠𝓁𝑖 , 𝑠

𝓁
𝑖+1] data at the start-point and end-point is known, which can be 

used to initiate an arc-length method to re-compute the sub-interval 
with 𝑁 increments, i.e., with an arc-length of Δ𝐿𝓁+1

𝑖 = Δ𝐿𝓁
𝑖 ∕𝑁 (see 

Fig. 2b).
After sub-interval [𝑠𝓁+1𝑖 , 𝑠𝓁+1𝑖+1 ] has been finished, the distance of the 

end-point of the sub-interval can be compared to the previously known 
solution at 𝑠𝓁𝑖+1, which is called parallel verification of intervals in Fig. 2c. 
Since the sub-interval is traversed in 𝑁 increments with length Δ𝑠0𝑖 ∕𝑁 , 
the triangle inequality with the arc-length measure implies that there 
must be a distance greater than or equal to zero between the newly 
found end-point and the reference end-point. The more ‘curved’ the 
domain in-between, the larger this distance. Based on an error measure 
(see section 3.2), intervals with a relatively large deviation between the 
coarse-level arc length and the fine-level arc length are to be marked 
for ‘refinement’.
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interval between two reference solutions, computed by the arc-length method (here the large dashed circle). The black dashed line indicates the curve estimation 
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tively, as illustrated in Fig. 2.
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𝑠 ∈ [0, 𝑆], where 𝑆 is the total length of the initial curve, and the 
corresponding sub-intervals, the curve-length domain can be mapped 
accordingly onto a parametric domain; see section 4 for more details.

With an initialised computational domain, the number of sub-
intervals determines the degree of parallelization. On any sub-interval, 
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𝑖+1] data at the start-point and end-point is known, which can be 
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After sub-interval [𝑠𝓁+1𝑖 , 𝑠𝓁+1𝑖+1 ] has been finished, the distance of the 

end-point of the sub-interval can be compared to the previously known 
solution at 𝑠𝓁𝑖+1, which is called parallel verification of intervals in Fig. 2c. 
Since the sub-interval is traversed in 𝑁 increments with length Δ𝑠0𝑖 ∕𝑁 , 
the triangle inequality with the arc-length measure implies that there 
must be a distance greater than or equal to zero between the newly 
found end-point and the reference end-point. The more ‘curved’ the 
domain in-between, the larger this distance. Based on an error measure 
(see section 3.2), intervals with a relatively large deviation between the 
coarse-level arc length and the fine-level arc length are to be marked 
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𝑠 ∈ [0, 𝑆], where 𝑆 is the total length of the initial curve, and the 
corresponding sub-intervals, the curve-length domain can be mapped 
accordingly onto a parametric domain; see section 4 for more details.
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intervals determines the degree of parallelization. On any sub-interval, 
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with 𝑁 increments, i.e., with an arc-length of Δ𝐿𝓁+1

𝑖 = Δ𝐿𝓁
𝑖 ∕𝑁 (see 

Fig. 2b).
After sub-interval [𝑠𝓁+1𝑖 , 𝑠𝓁+1𝑖+1 ] has been finished, the distance of the 

end-point of the sub-interval can be compared to the previously known 
solution at 𝑠𝓁𝑖+1, which is called parallel verification of intervals in Fig. 2c. 
Since the sub-interval is traversed in 𝑁 increments with length Δ𝑠0𝑖 ∕𝑁 , 
the triangle inequality with the arc-length measure implies that there 
must be a distance greater than or equal to zero between the newly 
found end-point and the reference end-point. The more ‘curved’ the 
domain in-between, the larger this distance. Based on an error measure 
(see section 3.2), intervals with a relatively large deviation between the 
coarse-level arc length and the fine-level arc length are to be marked 
for ‘refinement’.
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Fig. 2. Concept of the APALM. The large open circles represent reference solutions from a previously computed level. The small solid circles represent new data on the 
interval between two reference solutions, computed by the arc-length method (here the large dashed circle). The black dashed line indicates the curve estimation 
for which the sum is equal to the total curve length.

length domain. Contrary to MGRIT and Parareal, where the temporal do-
main 𝑡 ∈ [𝑇0, 𝑇1] is fixed, the APALM will work with a changing curve 
length domain 𝑠 ∈ [𝑆0, 𝑆1] depending on the length of the traversed 
path, with an underlying fixed parametric domain with parametric co-
ordinate 𝜉 ∈ [0, 1]. The APALM is initialised with an initial coarse grid 
approximation, in which the parametric and the curve length domains 
are subdivided into sub-domains 𝜉 ∈ [𝜉𝑖, 𝜉𝑖+1] and 𝑠 ∈ [𝑠𝑖, 𝑠𝑖+1], respec-
tively, as illustrated in Fig. 2.

In the initialization phase of the APALM, the first subdivision into 
sub-intervals is made (see Fig. 2a). Here, the sizes of the sub-intervals 
𝑠 ∈ [𝑠𝓁𝑖 , 𝑠

𝓁
𝑖+1] are determined based on the distance measure that is 

used by the corresponding ALM; see equation (2). Note that the super-
script 𝓁 denotes the 𝓁th level. Based on the initial curve-length domain 
𝑠 ∈ [0, 𝑆], where 𝑆 is the total length of the initial curve, and the 
corresponding sub-intervals, the curve-length domain can be mapped 
accordingly onto a parametric domain; see section 4 for more details.

With an initialised computational domain, the number of sub-
intervals determines the degree of parallelization. On any sub-interval, 
[𝑠𝓁𝑖 , 𝑠

𝓁
𝑖+1] data at the start-point and end-point is known, which can be 

used to initiate an arc-length method to re-compute the sub-interval 
with 𝑁 increments, i.e., with an arc-length of Δ𝐿𝓁+1

𝑖 = Δ𝐿𝓁
𝑖 ∕𝑁 (see 

Fig. 2b).
After sub-interval [𝑠𝓁+1𝑖 , 𝑠𝓁+1𝑖+1 ] has been finished, the distance of the 

end-point of the sub-interval can be compared to the previously known 
solution at 𝑠𝓁𝑖+1, which is called parallel verification of intervals in Fig. 2c. 
Since the sub-interval is traversed in 𝑁 increments with length Δ𝑠0𝑖 ∕𝑁 , 
the triangle inequality with the arc-length measure implies that there 
must be a distance greater than or equal to zero between the newly 
found end-point and the reference end-point. The more ‘curved’ the 
domain in-between, the larger this distance. Based on an error measure 
(see section 3.2), intervals with a relatively large deviation between the 
coarse-level arc length and the fine-level arc length are to be marked 
for ‘refinement’.
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Implementation details

■ Manager (MPI rank 0) 

• Performs sequential initialisation (relaxed in the fully parallel APALM method) 

• Checks convergence criteria and sends ‘kill command’ 

■ Pool of workers (MPI ranks 1…N) 

• Query global queue with complete ‘job description’ (problem configuration + initial guess) 

• Remove first job from queue, perform computation, add result to output list, perform validation, and 
add new (refined) jobs to the global job queue if needed 

• Terminate on “kill command”



Example: collapse of a shallow roof

■ Isogeometric Kirchhoff-Love shell model (gsKLShell extension) 

■ 4 x 4 NURBS elements of degree 3
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Example: collapse of a shallow roof

■ DelftBlue: Intel Xeon Gold  6248R, 24 cores @ 3.0 GHz
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Fig. 7. Results of the collapsing roof. The figure on the left indicates the full solution path, and the figures on the right depict the insets indicated in the left figure. 
The reference and serial solutions are represented by the solid line and the black markers, respectively. The solutions computed by the APALM are indicated per 
level. The simulation is performed with a tolerance of 𝜀𝑙 = 𝜀𝑢 = 10−2 and an increment length of Δ𝐿 = 30.

Table 2
Computational time in [s] for the benchmark of the collapsing roof for the ASPALM and APALM for dif-
ferent numbers of worker processes. The times for the ASPALM are presented for the serial initialization 
and the parallel correction phases, and the sum of the two is given as the total computational time. The 
numbers in the Serial column should theoretically be the same, but they provide a representation of the 
variation in the time measurements. The results are presented for simulations with increment lengths 
Δ𝐿 = 30 (a) and Δ𝐿 = 2.5 (b), and the italic row with 0 workers denotes the ASALM method.

(a) Δ𝐿 = 30
Workers ASPALM APALM
# Serial + Parallel = Total Parallel
0 115.7 195.3 311.1 287.1
1 119.2 209.0 328.2 318.8
2 114.0 100.8 214.8 162.4
4 109.5 46.1 155.6 115.8
8 115.0 27.0 142.1 115.9
16 115.1 17.8 132.9 116.3
32 114.9 15.9 130.8 113.0
64 114.5 13.3 127.8 116.0

(b) Δ𝐿 = 2.5
Workers ASPALM APALM
# Serial + Parallel = Total Parallel
0 507.2 1,778.1 2,285.3 2,187.1
1 500.5 1,757.7 2,258.2 2,310.2
2 447.5 835.3 1,282.9 1,114.0
4 493.4 449.4 942.8 558.1
8 496.8 223.2 720.0 453.9
16 503.3 113.0 616.2 483.6
32 493.2 58.1 551.3 510.9
64 504.2 29.2 533.4 498.3
128 501.0 20.2 521.3 494.7
256 505.5 18.8 524.3 509.6

work of [26], the full collapsing behaviour was revealed using arc-
length methods. The geometry, material, and load specifications can 
be found in Fig. 8.

The truncated cone is modelled using a quarter geometry using sym-
metry conditions to represent the axisymmetry as used in the original 
case of [31]. The geometry is modelled with 32 NURBS elements of de-
gree 2 over the height. Further, an initial arc length of 0.5 is used, and 
the scaling factor is Ψ = 0. The top boundary Γ2 is free, and on the 
bottom boundary Γ4, all displacements are fixed. The other boundaries 
have symmetric boundary conditions. The governing material model is 
an incompressible Mooney-Rivlin material model with a strain energy 
density function (with a slight abuse of notation)

Ψ(𝐂) =
𝑐1
2
(
𝐼1 − 3

)
+

𝑐2
2
(
𝐼2 − 3

)
, (18)

with 𝐼1 and 𝐼2 the first and second invariants of the deformation tensor 
𝐂 = 𝑭 ⊤𝑭 . More information on the problem set-up and the material 
models can be found in [26]. The reference results are obtained from a 
serial ALM computation with a sufficiently small increment size.

The results of the collapsing truncated cone problem are presented 
in Fig. 9. As seen in this picture, the serial initialization provides a 
coarse approximation of the path but leaves out details, e.g., the rotated 
“S”-shaped curve in the inset in Fig. 9. From the results, it is clear that 
the APALM focuses its refinement on the curved parts of the path and 
reveals the “S”-shaped curve among other features of the path.

Similar to the collapse of the roof, a scaling analysis of the paral-
lel evaluations is performed. The results in Table 3a verify that, as for 

Fig. 8. The problem definition for the benchmark of the collapsing truncated 
cone with inner radii 𝑅1 = 1 [m] and 𝑅2 = 2 [m] and height 𝐻 = 1 [m]. The 
thickness of the cone is 𝑡 = 0.1 [m]. The cone is modelled by using a quarter of 
the geometry, using symmetry conditions on Γ1 and Γ3. The displacements at 
the bottom boundary (Γ4) are fixed, and on the top boundary, a variable line 
load is applied and is variable with magnitude 𝑝 = 1 [N∕mm] and magnification 
factor 𝜆. The material of the cone is modelled using an incompressible Mooney-
Rivlin model with parameters 𝜇 = 𝑐1 + 𝑐2 = 4.225 [N∕mm2], 𝑐1∕𝑐2 = 7.

the benchmark example with the collapsing roof, the scalability of the 
parallel correction phase scales optimally up to 8 workers, where the 
parallel correction phase takes around 15% of the total computational 
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Example: snapping meta-material

■ Compressible Neo-Hookean material model 

■ 132 B-spline patches and 16.563 dofs in total
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Fig. 11. Results of the buckling of a clamped strip. The left figure provides the out-of-plane displacement of the free end with respect to the non-dimensional load 
4𝑃𝐿2∕𝜋2𝐸𝐼 , and the right figure represents the horizontal displacement of the free end with respect to the same non-dimensional load. In both figures, buckling 
occurs when 4𝑃𝐿2∕𝜋2𝐸𝐼 = 1 and the axes are split on this point to make the pre- and post-buckling branches both visible. The simulation is performed with a 
tolerance of 𝜀𝑙 = 𝜀𝑢 = 10−3 and a step length of Δ𝐿 = 5 ⋅ 10−5 (pre-buckling) and Δ𝐿 = 5 (post-buckling).

Fig. 12. The problem definition for the snapping meta material using a grid of 3 × 2.5 elements (a) with the element geometry as defined in (b). The element 
dimensions are defined using the thickness of the load-bearing part 𝑡𝑏 = 1.5 [mm] and the thickness of the snapping part 𝑡𝑠 = 1.0 [mm], the thickness of the gap 
𝑡𝑔 = 1.0 [mm] and the thickness of the connectors 𝑡𝑤 = 1.5 [mm], such that the height ℎ = 𝑡𝑏 + 𝑡𝑠 + 2𝑡𝑔 . The length of the element is 𝓁 = 10 [mm], and the amplitude 
of the cosine wave defining the element shape is given by 𝑎 = 0.3𝑙. Since the meta-material has 3 × 2.5 elements, the total width is 𝑊 = 3𝓁. The height of the 
total metamaterial is given by 𝐻 = 3ℎ + 2𝑡𝑔 + 𝑡𝑠 + ℎ𝐵 + ℎ𝑇 , where ℎ𝐵 = ℎ𝑇 = 5𝑡𝑔 are the buffer zones on the top and the bottom. The thickness of the specimen (in 
out-of-plane direction) is 𝑏 = 3 [mm]. The material is defined using a compressible Neo-Hookean material model with Young’s modulus 𝐸 = 78 [N∕mm2] and Poisson 
ratio 𝜈 = 0.4 [−]. The bottom boundary Γ1 is fixed using 𝑢𝑥 = 𝑢𝑦 = 0, and the top boundary Γ2 is fixed in the horizontal direction (𝑢𝑥 = 0) and coupled in the vertical 
direction 𝑢𝑦. The load applied on the top boundary is a variable defined by 𝜆𝑃 .

are performed as soon as the first path segments have been initial-
ized. Conceptually, the APALM has a higher degree of parallelization 
since the workers are not idle until the full solution curve is obtained. 
Given a basic step function and distance computation, the present pa-
per provides all algorithms necessary for implementing the APALM with 
manager-worker parallelization.

The implementation of the APALM is evaluated using three bench-
mark problems and an application example. The first problem involves 
the collapse of a composite shallow cylindrical shell. The second prob-
lem involves the collapse of a truncated conical rubber shell, and the 
third example involves the bifurcation problem of a strip subject to an 

in-plane load. Moreover, the method is applied to the modelling of a 
snapping metamaterial to investigate its performance on a larger-scale 
problem. In all examples, it can be observed that the APALM provides 
an accurate description of the reference solution, given a (sufficiently) 
coarse serial initialization of the curve. Through refinement, the APALM 
provides refinements (hence details in the solution), typically on sharp 
corners in the load-displacement diagrams. In addition, the bifurca-
tion example also shows that the APALM is able to work within an 
exploration scheme for bifurcations. In all benchmark problems, the 
ASPALM and APALM have been used to evaluate the parallelization of 
the schemes. The natural separation of the serial and parallel stages 
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Example: snapping meta-material

■ DelftBlue: Intel Xeon Gold  6248R, 24 cores @ 3.0 GHz
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Fig. 13. Stress-strain diagram for the snapping meta-material from Fig. 12. The vertical axis depicts the equivalent stress 𝜎 = 𝜆𝑃∕(𝑏𝑊 ), and the horizontal axis 
represents the strain 𝜀 = 𝑢𝑦∕𝐻 , where 𝑢𝑦 is the displacement of the top boundary Γ2 . The complete curve with the displacement-controlled (DC) results, the points 
obtained in serial initialization, and the line obtained by parallel corrections are presented on the left. The figures on the right present the points from different 
hierarchical levels at the inset depicted in the left diagram. The simulation is performed with a tolerance of 𝜀𝑙 = 𝜀𝑢 = 10−3 and an increment length of Δ𝐿 = 0.05.

Table 5
Computational time in [s] for the example of the snapping meta-
material for the ASPALM and APALM for different numbers of 
worker processes. The computational time for a displacement-
controlled (DC) simulation with step Δ𝑢𝑦 = 0.0005 [𝑚𝑚] is pro-
vided as a reference. The times for the ASPALM are presented 
for the serial initialization and the parallel correction phases, 
and the sum of the two is given as the total computational time. 
The numbers in the Serial column should theoretically be the 
same, but they provide a representation of the variation in the 
time measurements. The italic row with 0 workers denotes the 
ASALM method.

Workers ASPALM APALM DC
# Serial + Parallel = Total Parallel Serial
0 1,571.6 5,204.8 6,776.4 7,022.9 4,400.8
1 1,686.9 4,593.2 6,280.1 5,319.1
2 1,237.5 3,005.9 4,243.4 3,827.9
4 1,742.7 1,548.2 3,290.9 2,137.3
8 1,445.4 717.4 2,162.8 1,711.8
16 1,931.1 352.2 2,283.3 1,632.9
32 1,746.9 219.7 1,966.6 1,755.6

of the ASPALM reveals the scalability of the parallel correction with re-
spect to the number of workers, showing that the parallel correction can 
take only a fraction of the total computational time for a larger num-
ber of workers. Furthermore, the comparison between the ASPALM and 
the APALM shows that the full parallelization of the APALM provides 
a more efficient scheme than the two-stage approach of the ASPALM, 
as expected. The benchmarks and example also show that the APALM 
provides a full solution curve – including adaptive refinements – in the 
same computational time needed to compute only the initialisation of 
the ASPALM. This reveals the potential of the APALM: it can provide de-
tailed solution paths without significantly increasing the computational 
time. The coarser the initial step size, the more arc-length intervals are 
computed during the parallel corrections of the method until a suffi-
cient; hence, the higher the computational merit of the method to reach 
a desired level of detail. Moreover, the scaling analyses also show that 
the benefits of the APALM are already achieved with a small number of 
workers, e.g., 8 workers, making the APALM interesting on a desktop 
scale. For larger clusters, the APALM can be employed using dynamic 
load balancing within OpenMP.

As the APALM enables parallelization in the arc-length domain, 
future applications of this method include quasi-static computations 
for solid and fluid dynamics, among other problems, especially those 
with a large number of load steps. Therefore, future works with this 
method include automatic exploration of solution spaces, e.g., follow-
ing the work of [8,9], or applications with large numbers of degrees 

of freedom, for instance with phase-field models for fracture mechanics 
[34]. Other future work includes combining the APALM with a spatial 
refinement scheme to enable space-quasi-time refinements. MPI scal-
ability and distribution of cores per worker are topics to investigate 
for different applications. Another topic for further investigation is the 
convergence of the underlying arc-length method for large steps. Since 
a fewer number of initial intervals reduces the serial initialization time 
of the APALM, the parallel performance can be increased significantly 
when the initial step size is maximized. For example, the Mixed In-
tegration Point (MIP) method increases the convergence of the ALM, 
allowing for larger step sizes. The performance of the MIP is demon-
strated for isogeometric Kirchhoff–Love shells in [35–38]. Lastly, since 
the presented APALM is developed for path-independent problems, an 
extension to path-dependent problems is a natural direction for future 
research.
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Lessons learned

■ MPI can be used for “task-based” dynamic parallelisation based on a task queue 

■ The code was parallelised via OpenMP (assembly, solve, etc.) so that the number of MPI processes per 
compute node was chosen to be smaller (e.g., 1-4) than the total number of compute cores so that each 
MPI process could solve the problem instance with 6-8 OpenMP threads


