Case studies of OpenMP & MPI

Joint work with Hugo Verhelst & Roel Tielen

Matthias Möller Department of Applied Mathematics Delft University of Technology, The Netherlands

TUDelft

About

- Diploma in Mathematics from TU Dortmund, DE (2003)
- PhD in Mathematics from TU Dortmund, DE (2008)
- Associate Professor of Numerical Analysis, TU Delft

Research interests

- Numerical simulations and optimization of PDE problems
- Quantum computing and high-performance computing
- Scientific machine learning

Today's talk

- Case studies of using OpenMP / MPI
 - Brute-force QUBO sampler
 - Parallel-in-time method in G+Smo
 - Parallel Arc-Length method in G+Smo

Brute-force QUBO sampler

• **Problem**: Given a symmetric real-valued matrix $\mathbf{Q} \in \mathbb{R}^{n \times n}$ find a bit string $\mathbf{x} \in \{0,1\}^n$ such that

$$\mathbf{x}^* = \min_{\mathbf{x} \in \{0,1\}^n} \mathbf{x}^\mathsf{T} \mathbf{Q} \mathbf{x}$$
 or
 $e^* = \min_{\mathbf{x} \in \{0,1\}^n} \mathbf{x}^\mathsf{T} \mathbf{Q} \mathbf{x}$

- Challenge: There are 2ⁿ different bit strings that need to be tested to find the *global* minimum
- Approach: Quantum annealers (D-Wave) are designed to solve this problem efficiently.

However, for developing QUBO formulations we need an efficient brute-force sampler that can produce the full energy landscape efficiently.

Brute-force QUBO sampler

- **Data structures**:
 - *H*: histogram($E_{min}, E_{max}, N_{bins}$)
 - *S*: array of *N*_{best} samples
- Sequential algorithm:

• For
$$i = 0, ..., 2^n - 1$$

- create $\mathbf{x}_i \in \{0,1\}^n$ and compute $e_i = \mathbf{x}_i^\top \mathbf{Q} \mathbf{x}_i$
- increment the counter of the corresponding "energy bin" by one and insert e_i into array of best samples if appropriate (sorting!)

- C++20 compute kernel with PyBind11 wrapper
- Linear algebra library
 - **Q**: Eigen::SparseMatrix<T, Eigen::ColMajor> or Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>
 - **x**: Eigen::Vector<T, Eigen::Dynamic>
- MPI parallelization
 - Each rank has its own histogram H and array S, computes T energy = (x.cwiseProduct(Q*x)).colwise().sum()[0];and updates H and potentially S

struct Histogram {
 Histogram(...) {...}
 std::vector<std::size_t> bins;
 std::vector<double> values;
};

// we don't have to allreduce hist.values because they are the same for all
// copies and are set by the constructor

```
struct Samples {
  Samples(...) {...}
  std::vector<std::pair<double, std::size t>> samples;
};
```

MPI Aint baseaddr, addr, displacement[2]; MPI Get address (&samples.samples.data()->first, &baseaddr); MPI Get address (&samples.samples.data()->second, &addr); displacement[0] = 0; displacement[1] = addr - baseaddr;

MPI Datatype datatype[2]; datatype[0] = MPI_DOUBLE; datatype[1] = MPI_UNSIGNED_LONG_LONG;

int blocklength[2]; blocklength[0] = 1; blocklength[1] = 1;

MPI Datatype MPI PAIR; MPI_Type_create_struct(2, blocklength, displacement, datatype, &MPI_PAIR); MPI_Type_commit(&MPI PAIR);

// reduce samples from all MPI processes Samples global samples(nprocs * nsamples); MPI Allgather(samples.samples.data(), nsamples, MPI PAIR,

// sort and resize samples from all MPI processes std::sort(global samples.samples.begin(), global samples.samples.end(), [](const auto& lhs, const auto& rhs) { return lhs.first < rhs.first; });</pre>

while (global samples.samples.size() > nsamples) global samples.samples.pop back();

```
global samples.samples.data(), nsamples, MPI PAIR, MPI COMM WORLD);
```

Scalability: N=26, 67.108.864 bit strings, 15% fill

MPI	Runtime		
1	19.57		
2	7.61 - 9.52		
4	3.80 - 4.75		
8	1.89 - 2.37		
16	0.94 - 1.20		
32	0.47 - 0.60		
64	0.23 - 0.24		
128	0.11 - 0.13		
192	0.11 - 0.12		

Parallel runtime				
19.57				
18.95				
18.70				
18.24				
17.58				
17.31				
19.55				
54.72				
45.55				

Python kills performance

- Long startup times (import)
- GIL hinders effective OpenMP

Lessons learned

- Close to optimal scaling up to 128 cores per node for compute-bound nearly data-less problem
- User-defined MPI datatypes can be used to perform MPI operations on C++ datatypes
- DON'T USE PYTHON FOR PARALLEL PROGRAMMING

Not discussed here

reduction, atomic updates of H and S). Works outside Python but is limited by GIL.

Since the QUBO matrix is the same for all processes, we implemented a MPI+OpenMP variant with 1-2 MPI process(es) per node and multiple OpenMP threads per MPI process (user-defined OpenMP)

G+Smo - Geometry plus Simulation Modules

- Open-source (MLP-2.0) isogeometric analysis library written in C++11 on top of the Eigen library
- Developers & users: Inria, TU Delft, JKU, RICAM, UoFlorence, MTU AeroEngines, Vtech CMCC, ...
- Features:
 - OpenMP parallelization (WIP), MPI parallelization (demonstrator apps + external libraries)
 - Wrappers for Python (PyBind11), Julia (WIP), Matlab (WIP)
 - External libraries: OpenNurbs, Pardiso, Trilions, Spectra, CoDiPack, ...
 - Import/export formats: XML, VTK, 3dm, ...

Typical applications

- Geometric modelling with adaptive splines
- Simulation of linear/nonlinear PDE problems
- PDE-constrained shape/topology optimization

Sequential time integrators

Model problem

 $\frac{du(t)}{dt} = A(u(t))$

Explicit time integrators

$$\frac{u^{n+1} - u^n}{\Delta t} = A(u^n, t^n) \quad \Rightarrow \quad u^{n+1} = u^n$$

Implicit time integrators

$$\frac{u^{n+1} - u^n}{\Delta t} = A(u^{n+1}, t^{n+1})$$

$$t), t), \quad u(t = 0) = u^0$$

$$u^{n+1} = u^n + \Delta t A(u^n, t^n), \quad u^n := u(t^n)$$

$$\Rightarrow \quad u^{n+1} - \Delta t A(u^{n+1}, t^{n+1}) = u^n$$

Parallel-in-time integrators

S. Friedhoff, et al. A Multigrid-in-Time Algorithm for Solving Evolution Equations in Parallel, 16th Copper Mountain Conference on Multigrid Methods 2013.

Sketch of the parallel-in-time algorithm

Writing out tl

he two-level time integration scheme
$$[M + \Delta t_F K] u^{n+1} = M u^n + f$$
 for all time levels yields

$$\begin{bmatrix} I & & \\ -\Psi M & I & \\ & \ddots & \ddots & \\ & & -\Psi M & I \end{bmatrix} \begin{bmatrix} u^0 \\ u^1 \\ \vdots \\ u^N \end{bmatrix} = \Delta t_F \begin{bmatrix} \Psi f \\ \Psi f \\ \vdots \\ \Psi f \end{bmatrix} \quad \text{with} \quad \Psi = [M + \Delta t_F K]^{-1}$$

Reordering of the system matrix (and the vectors!) into Fine and Coarse time levels yields

$$\begin{bmatrix} A_{FF} & A_{FC} \\ A_{CF} & A_{CC} \end{bmatrix} = \begin{bmatrix} I_F & 0 \\ A_{CF}A_{FF}^{-1} & I_C \end{bmatrix} \begin{bmatrix} A_{FF} & 0 \\ 0 & S \end{bmatrix} \begin{bmatrix} I_F & A_{FF}^{-1}A_{FC} \\ 0 & I_C \end{bmatrix} \quad \text{with} \quad S = A_{CC} - A_{CF}A_{FF}^{-1}A_{FC}$$

S. Friedhoff, et al. A Multigrid-in-Time Algorithm for Solving Evolution Equations in Parallel, 16th Copper Mountain Conference on Multigrid Methods 2013.

Sketch of the parallel-in-time algorithm

Approximation of the Schur complement matrix

$$S = \begin{bmatrix} I & & \\ -(\Psi M)^m & I & \\ & \ddots & \ddots & \\ & & -(\Psi M)^m & I \end{bmatrix} \approx$$

Approximate coarse integrator

$$\Phi = \left[M + \Delta t_C K\right]$$

Repeat this two-level recursion to obtain MGRIT (multi-grid-in-time)

S. Friedhoff, et al. A Multigrid-in-Time Algorithm for Solving Evolution Equations in Parallel, 16th Copper Mountain Conference on Multigrid Methods 2013.

Strong scaling

Euler scheme and IGA discretisation on 128 Xeon Gold 6130 CPUs (2.10GHz, 96GB, 16 cores)

• 2d heat equation with $h = 2^{-6}$ spatial resolution solved for $N_t = 10.000$ time steps using the backward

R. Tielen, M. Möller, and C. Vuik (2022) Combining p-multigrid and multigrid reduction in time methods to obtain a scalable solver for isogeometric analysis, SN Appl. Sci. 4

Weak scaling

• 2d heat equation with $h = 2^{-6}$ spatial resolution solved for $N_t = \text{#cores}/64 \cdot 1.000$ time steps using the backward Euler scheme and IGA discretisation on 128 Xeon Gold 6130 CPUs (2.10GHz, 96GB, 16 cores)

Lessons learned

- Sequential processes like time integration can be parallelised using parallel-in-time methods
- Sufficient number of MPI processes is required to compensate the computational/mathematical overhead
- Rest of the math (and implementation) needs to be right as well
 - Large Δt_C lead to unstable explicit integrators \Rightarrow use (semi-)implicit time integrators
 - Stationary problems need to be solved efficiently (PhD Thesis by Roel Tielen)
 - It's very difficult to utilise many-core CPUs efficiently for memory-bound problems

Snapping meta-material simulation

Arc-length method (ALM)

Nonlinear system of equations

$$\mathbf{G}(\mathbf{u},\lambda) = \mathbf{N}(\mathbf{u}) - \lambda \mathbf{P} = \mathbf{0}$$

- **u** is the displacement vector computed by some PDE problem
- $N(\mathbf{u})$ is the vector of internal forces depending on \mathbf{u}
- λ is a scaling factor for the applied load ${f P}$
- Task: find the load-response curve $\{(\mathbf{u}, \lambda) : \mathbf{G}(\mathbf{u}, \lambda) = \mathbf{0}\}$
- Challenges: bifurcation points, convergence problems, find the full load-response path not a set of discrete points, ...

Sequential ALM

- Scenario's
 - Load control: fix λ and compute **u**
 - Displacement control: fix **u** and compute λ
 - Arc-length control: fix $\Delta \ell$ and compute λ and \mathbf{u} simultaneously such that

 $f(\Delta \mathbf{u}, \Delta \lambda) = \Delta \mathbf{u}^{\mathsf{T}} \Delta \mathbf{u} + \Psi^2 \Delta \lambda^2 \mathbf{P}^{\mathsf{T}} \mathbf{P} - \Delta \mathscr{E} = 0$

• Start with $\mathbf{w}_0 := (\mathbf{u}_0, \lambda_0)$ such that $\mathbf{G}(\mathbf{w}_0) = \mathbf{0}$ and compute the next increment $\Delta \mathbf{w}_i = (\Delta \mathbf{u}_i, \Delta \lambda_i)$ such that $G(\mathbf{w}_{i+1} = \mathbf{w}_i + \Delta \mathbf{w}_i) = \mathbf{0}$ by solving the nonlinear problem using Newton's method (for i = 1, 2, ...)

Adaptive parallel ALM

Initialisation

H.M. Verhelst, J.H. Den Besten, and M. Möller (2024) An adaptive parallel arc-length method, Computers & Structures 296:107300

Parallel computation of subintervals

Adaptive parallel ALM

Parallel verification of subintervals

H.M. Verhelst, J.H. Den Besten, and M. Möller (2024) An adaptive parallel arc-length method, Computers & Structures 296:107300

Curve-length reparameterization

- Manager (MPI rank 0)
 - Performs sequential initialisation (relaxed in the fully parallel APALM method)
 - Checks convergence criteria and sends 'kill command'
- Pool of workers (MPI ranks 1...N)
 - Query global queue with complete 'job description' (problem configuration + initial guess)
 - add new (refined) jobs to the global job queue if needed
 - Terminate on "kill command"

Remove first job from queue, perform computation, add result to output list, perform validation, and

Example: collapse of a shallow roof

- Isogeometric Kirchhoff-Love shell model (gsKLShell extension)
- 4 x 4 NURBS elements of degree 3

H.M. Verhelst, J.H. Den Besten, and M. Möller (2024) An adaptive parallel arc-length method, Computers & Structures 296:107300

10

12

4

10

12

Example: collapse of a shallow roof

DelftBlue: Intel Xeon Gold 6248R, 24 cores @ 3.0 GHz

Workers	ASPALM		APALM	Workers	ASPALM			APALM	
#	Serial + Parallel = Total			Parallel	#	Serial + Parallel = Total			Parallel
0	115.7	195.3	311.1	287.1	0	507.2	1,778.1	2,285.3	2,187.1
1	119.2	209.0	328.2	318.8	1	500.5	1,757.7	2,258.2	2,310.2
2	114.0	100.8	214.8	162.4	2	447.5	835.3	1,282.9	1,114.0
4	109.5	46.1	155.6	115.8	4	493.4	449.4	942.8	558.1
8	115.0	27.0	142.1	115.9	8	496.8	223.2	720.0	453.9
16	115.1	17.8	132.9	116.3	16	503.3	113.0	616.2	483.6
32	114.9	15.9	130.8	113.0	32	493.2	58.1	551.3	510.9
64	114.5	13.3	127.8	116.0	64	504.2	29.2	533.4	498.3
					128	501.0	20.2	521.3	494.7
					256	505.5	18.8	524.3	509.6

(a) $\Delta L = 30$

(b) $\Delta L = 2.5$

Example: snapping meta-material

- Compressible Neo-Hookean material model
- 132 B-spline patches and 16.563 dofs in total

H.M. Verhelst, J.H. Den Besten, and M. Möller (2024) An adaptive parallel arc-length method, Computers & Structures 296:107300

(b) The snapping building block, composed of 15 patches outlines in black.

(a) A snapping meta-material with 3×2.5 building blocks, of which one is outlined. The total multi-patch consists of 132 patches.

Example: snapping meta-material

DelftBlue: Intel Xeon Gold 6248R, 24 cores @ 3.0 GHz

Workers		APALM		
#	Serial +	- Parallel =	= Total	Parallel
0	1,571.6	5,204.8	6,776.4	7,022.9
1	1,686.9	4,593.2	6,280.1	5,319.1
2	1,237.5	3,005.9	4,243.4	3,827.9
4	1,742.7	1,548.2	3,290.9	2,137.3
8	1,445.4	717.4	2,162.8	1,711.8
16	1,931.1	352.2	2,283.3	1,632.9
32	1,746.9	219.7	1,966.6	1,755.6

Lessons learned

- MPI can be used for "task-based" dynamic parallelisation based on a task queue
- MPI process could solve the problem instance with 6-8 OpenMP threads

The code was parallelised via OpenMP (assembly, solve, etc.) so that the number of MPI processes per compute node was chosen to be smaller (e.g., 1-4) than the total number of compute cores so that each