IgANets: Physics-Informed Machine Learning Embedded Into Isogeometric Analysis

Matthias Möller
Department of Applied Mathematics
Delft University of Technology, The Netherlands
Aromath seminar
25 April 2023, Sophia Antipolis Cedex, France
Joint work with Deepesh Toshniwal, Frank van Ruiten (TUD),
Casper van Leeuwen, Paul Melis (SURF), Jaewook Lee (TU Vienna)

Design-through-Analysis

Design-through-Analysis 1.0

"[..] the potential value of design through analysis was demonstrated by a significant reduction in structural weight of the project vehicle."

* GRID POINT
- ASET GRID POINT

James A. Augustitus, Mounir M. Kamal, and Larry J. Howell. Design through analysis of an experimental automobile structure. SAE Transactions, 86:2186-2198, 1977

Design-through-Analysis 2.0

Vision: seamless design and analysis workflows without time-consuming (often manual) geometry cleaning and meshing \rightarrow Isogeometric Analysis (Hughes et al. '05)

Interactive Design-through-Analysis

Vision: fast interactive qualitative analysis and accurate quantitative analysis within the same computational framework with seamless switching between both approaches

[^0]
Physics-informed machine learning

PINN (Raissi et al. 2018): learns the (initial-)boundary-value problem

Physics-informed machine learning

PINN (Raissi et al. 2018): learns the (initial-)boundary-value problem

Physics-informed machine learning

PINN (Raissi et al. 2018): learns the (initial-)boundary-value problem

B easy to implement for 'any' PDE because AD magic does it for you \leftrightarrow combined un-/supervised learning poor extrapolation/generalization \& point-based approach requires re-evaluation of NN at every point
R rudimentary convergence theory

DeepONet (Lu et al. 2019): learns the differential operator $G_{\theta}(u)(y)=\sum_{k=1}^{q} \underbrace{b_{k}\left(u\left(x_{1}\right), u\left(x_{2}\right), \ldots, u\left(x_{m}\right)\right)}_{\text {branch }} \underbrace{t_{k}(y)}_{\text {trunk }}$

Physics-informed machine learning

PINN (Raissi et al. 2018): learns the (initial-)boundary-value problem

B easy to implement for 'any' PDE because AD magic does it for you \leftrightarrow combined un-/supervised learning poor extrapolation/generalization \& point-based approach requires re-evaluation of NN at every point
R rudimentary convergence theory

DeepONet (Lu et al. 2019): learns the differential operator $G_{\theta}(u)(y)=\sum_{k=1}^{q} \underbrace{b_{k}\left(u\left(x_{1}\right), u\left(x_{2}\right), \ldots, u\left(x_{m}\right)\right)}_{\text {branch }} \underbrace{t_{k}(y)}_{\text {trunk }}$ Don't we know good bases?

Bases

AI/ML community: Fourier series, orthogonal polynomials, problem-specific basis functions \rightarrow impractical for practical computer-aided geometric design

Bases

AI/ML community: Fourier series, orthogonal polynomials, problem-specific basis functions \rightarrow impractical for practical computer-aided geometric design

FEM community: plethora of finite element basis functions defined on the computational mesh \rightarrow impractical for a priori training of generic networks

Bases

AI/ML community: Fourier series, orthogonal polynomials, problem-specific basis functions \rightarrow impractical for practical computer-aided geometric design

FEM community: plethora of finite element basis functions defined on the computational mesh \rightarrow impractical for a priori training of generic networks

CAGD community: trimmed NURBS \rightarrow maybe, but we're not yet there

Bases

AI/ML community: Fourier series, orthogonal polynomials, problem-specific basis functions \rightarrow impractical for practical computer-aided geometric design

FEM community: plethora of finite element basis functions defined on the computational mesh \rightarrow impractical for a priori training of generic networks

CAGD community: trimmed NURBS \rightarrow maybe, but we're not yet there
IGA community: multi-patch tensor-product or locally adaptive B-splines \rightarrow Let's do it!

B-spline basis functions

Cox de Boor recursion formula

$$
\begin{aligned}
& b_{i}^{0}(\xi)= \begin{cases}1 & \text { if } \xi_{i} \leq \xi<\xi_{i+1} \\
0 & \text { otherwise }\end{cases} \\
& b_{i}^{p}(\xi)=\frac{\xi-\xi_{i}}{\xi_{i+p}-\xi_{i}} b_{i}^{p-1}(\xi) \\
& +\frac{\xi_{i+p+1}-\xi}{\xi_{i+p+1}-\xi_{i+1}} b_{i+1}^{p-1}(\xi)
\end{aligned}
$$

B-spline basis functions

Cox de Boor recursion formula

$$
\begin{aligned}
& b_{i}^{0}(\xi)= \begin{cases}1 & \text { if } \xi_{i} \leq \xi<\xi_{i+1} \\
0 & \text { otherwise }\end{cases} \\
& b_{i}^{p}(\xi)=\frac{\xi-\xi_{i}}{\xi_{i+p}-\xi_{i}} b_{i}^{p-1}(\xi) \\
& +\frac{\xi_{i+p+1}-\xi}{\xi_{i+p+1}-\xi_{i+1}} b_{i+1}^{p-1}(\xi)
\end{aligned}
$$

Many good properties: compact support $\left[\xi_{i}, \xi_{i+p+1}\right)$, positive function values over support interval, derivatives of B-splines are combinations of lower-order B-splines, ...

Isogeometric Analysis

Paradigm: represent 'everything' in terms of tensor products of B-spline basis functions

$$
B_{i}(\xi, \eta):=b_{i}^{p}(\xi) \cdot b_{k}^{q}(\eta), \quad i:=(k-1) \cdot n_{i}+i, \quad 1 \leq i \leq n_{i}, \quad 1 \leq k \leq n_{k},
$$

Isogeometric Analysis

Paradigm: represent 'everything' in terms of tensor products of B-spline basis functions

$$
B_{i}(\xi, \eta):=b_{i}^{p}(\xi) \cdot b_{k}^{q}(\eta), \quad i:=(k-1) \cdot n_{i}+i, \quad 1 \leq i \leq n_{i}, \quad 1 \leq k \leq n_{k},
$$

Many more good properties: partition of unity $\sum_{i=1}^{n} B_{i}(\xi, \eta) \equiv 1, C^{p-1}$ continuity, \ldots

Isogeometric Analysis

Geometry: bijective mapping from the unit square to the physical domain $\Omega_{h} \subset \mathbb{R}^{d}$

$$
\mathbf{x}_{h}(\xi, \eta)=\sum_{i=1}^{n} B_{i}(\xi, \eta) \cdot \mathbf{x}_{i} \quad \forall(\xi, \eta) \in[0,1]^{2}=: \hat{\Omega}
$$

- the shape of Ω_{h} is fully specified by the set of control points $\mathbf{x}_{i} \in \mathbb{R}^{d}$

Isogeometric Analysis

Geometry: bijective mapping from the unit square to the physical domain $\Omega_{h} \subset \mathbb{R}^{d}$

$$
\mathbf{x}_{h}(\xi, \eta)=\sum_{i=1}^{n} B_{i}(\xi, \eta) \cdot \mathbf{x}_{i} \quad \forall(\xi, \eta) \in[0,1]^{2}=: \hat{\Omega}
$$

- the shape of Ω_{h} is fully specified by the set of control points $\mathbf{x}_{i} \in \mathbb{R}^{d}$
- interior control points must be chosen such that 'grid lines' do not fold as this violates the bijectivity of $\mathbf{x}_{h}: \hat{\Omega} \rightarrow \Omega_{h}$

Isogeometric Analysis

Geometry: bijective mapping from the unit square to the physical domain $\Omega_{h} \subset \mathbb{R}^{d}$

$$
\mathbf{x}_{h}(\xi, \eta)=\sum_{i=1}^{n} B_{i}(\xi, \eta) \cdot \mathbf{x}_{i} \quad \forall(\xi, \eta) \in[0,1]^{2}=: \hat{\Omega}
$$

- the shape of Ω_{h} is fully specified by the set of control points $\mathbf{x}_{i} \in \mathbb{R}^{d}$
- interior control points must be chosen such that 'grid lines' do not fold as this violates the bijectivity of $\mathrm{x}_{h}: \hat{\Omega} \rightarrow \Omega_{h}$
- refinement in h (knot insertion) and p (order elevation) preserves the shape of Ω_{h} and can be used to generate finer computational 'grids' for the analysis

Isogeometric Analysis

Model problem: Poisson's equation

$$
-\Delta u_{h}=f_{h} \quad \text { in } \quad \Omega_{h}, \quad u_{h}=g_{h} \quad \text { on } \quad \partial \Omega_{h}
$$

with

$$
\begin{array}{rrl}
\text { (geometry) } \mathbf{x}_{h}(\xi, \eta) & =\sum_{i=1}^{n} B_{i}(\xi, \eta) \cdot \mathbf{x}_{i} & \forall(\xi, \eta) \in[0,1]^{2} \\
\text { (solution) } & u_{h} \circ \mathbf{x}_{h}(\xi, \eta)=\sum_{i=1}^{n} B_{i}(\xi, \eta) \cdot u_{i} & \forall(\xi, \eta) \in[0,1]^{2} \\
\text { (r.h.s vector) } & f_{h} \circ \mathbf{x}_{h}(\xi, \eta)=\sum_{i=1}^{n} B_{i}(\xi, \eta) \cdot f_{i} & \forall(\xi, \eta) \in[0,1]^{2} \\
\text { (boundary conditions) } & g_{h} \circ \mathbf{x}_{h}(\xi, \eta)=\sum_{i=1}^{n} B_{i}(\xi, \eta) \cdot g_{i} & \forall(\xi, \eta) \in \partial[0,1]^{2}
\end{array}
$$

Isogeometric Analysis

Abstract representation

Given \mathbf{x}_{i} (geometry), f_{i} (r.h.s. vector), and g_{i} (boundary conditions), compute

$$
\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]=A^{-1}\left(\left[\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right],\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{n}
\end{array}\right]\right) \cdot b\left(\left[\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right],\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right],\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{n}
\end{array}\right]\right)
$$

Any point of the solution can afterwards be obtained by a simple function evaluation

$$
(\xi, \eta) \in[0,1]^{2} \quad \mapsto \quad u_{h} \circ \mathbf{x}_{h}(\xi, \eta)=\left[B_{1}(\xi, \eta), \ldots, B_{n}(\xi, \eta)\right] \cdot\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]
$$

Isogeometric Analysis

Abstract representation

Given \mathbf{x}_{i} (geometry), f_{i} (r.h.s. vector), and g_{i} (boundary conditions), compute

$$
\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]=A^{-1}\left(\left[\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right],\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{n}
\end{array}\right]\right) \cdot b\left(\left[\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right],\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right],\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{n}
\end{array}\right]\right)
$$

Any point of the solution can afterwards be obtained by a simple function evaluation

$$
(\xi, \eta) \in[0,1]^{2} \quad \mapsto \quad u_{h} \circ \mathbf{x}_{h}(\xi, \eta)=\left[B_{1}(\xi, \eta), \ldots, B_{n}(\xi, \eta)\right] \cdot\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]
$$

Let us interpret the sets of B-spline coefficients $\left\{\mathbf{x}_{i}\right\},\left\{f_{i}\right\}$, and $\left\{g_{i}\right\}$ as an efficient encoding of our PDE problem that is fed into our $\lg A$ machinery as input.
The output of our $\lg \mathrm{A}$ machinery are the B-spline coefficients $\left\{u_{i}\right\}$ of the solution.

Isogeometric Analysis + Physics-Informed Machine Learning

$\lg A N e t:$ replace computation

$$
\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]=A^{-1}\left(\left[\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right],\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{n}
\end{array}\right]\right) \cdot b\left(\left[\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right],\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right],\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{n}
\end{array}\right]\right)
$$

Isogeometric Analysis + Physics-Informed Machine Learning
$\lg A N e t:$ replace computation by physics-informed machine learning

$$
\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]=\operatorname{lgANet}\left(\left[\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right],\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right],\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{n}
\end{array}\right] ;\left(\xi^{(k)}, \eta^{(k)}\right)_{k=1}^{N_{\text {samples }}}\right)
$$

Isogeometric Analysis + Physics-Informed Machine Learning

$\lg A N e t:$ replace computation by physics-informed machine learning

$$
\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]=\operatorname{lgANet}\left(\left[\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right],\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right],\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{n}
\end{array}\right] ;\left(\xi^{(k)}, \eta^{(k)}\right)_{k=1}^{N_{\text {samples }}}\right)
$$

Compute the solution from the trained neural network as follows

$$
u_{h}(\xi, \eta)=\left[B_{1}(\xi, \eta), \ldots, B_{n}(\xi, \eta)\right] \cdot\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right], \quad\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]=\lg \text { ANet }\left(\left[\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right],\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right],\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{n}
\end{array}\right]\right)
$$

IgANet architecture

Loss function

Model problem: Poisson's equation with Dirichlet boundary conditions

$$
\begin{aligned}
& \operatorname{loss}_{\mathrm{PDE}}=\frac{\alpha}{N_{\Omega}} \sum_{k=1}^{N_{\Omega}}\left|\Delta\left[u_{h} \circ \mathbf{x}_{h}\left(\xi^{(k)}, \eta^{(k)}\right)\right]-f_{h} \circ \mathbf{x}_{h}\left(\xi^{(k)}, \eta^{(k)}\right)\right|^{2} \\
& \operatorname{loss}_{\mathrm{BDR}}=\frac{\beta}{N_{\Gamma}} \sum_{k=1}^{N_{\Gamma}}\left|u_{h} \circ \mathbf{x}_{h}\left(\xi^{(k)}, \eta^{(k)}\right)-g_{h} \circ \mathbf{x}_{h}\left(\xi^{(k)}, \eta^{(k)}\right)\right|^{2}
\end{aligned}
$$

Express derivatives with respect to physical space variables using the Jacobian J, the Hessian H and the matrix of squared first derivatives Q (Schillinger et al. 2013):

$$
\left[\begin{array}{c}
\frac{\partial^{2} B}{\partial x^{2}} \\
\frac{\partial^{2} B}{\partial x \partial y} \\
\frac{\partial^{2} B}{\partial y^{2}}
\end{array}\right]=Q^{-\top}\left(\left[\begin{array}{c}
\frac{\partial^{2} B}{\partial \xi^{2}} \\
\frac{\partial^{2} B}{\partial \xi \partial \eta} \\
\frac{\partial^{2} B}{\partial \eta^{2}}
\end{array}\right]-H^{\top} J^{-\top}\left[\begin{array}{c}
\frac{\partial B}{\partial \xi} \\
\frac{\partial B}{\partial \eta}
\end{array}\right]\right)
$$

Two-level training strategy

For $\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right] \in \mathcal{S}_{\text {geo }},\left[f_{1}, \ldots, f_{n}\right] \in \mathcal{S}_{\text {rhs }},\left[g_{1}, \ldots, g_{n}\right] \in \mathcal{S}_{\text {bcond }}$ do
For a batch of randomly sampled $\left(\xi_{k}, \eta_{k}\right) \in[0,1]^{2}$ (or the Greville abscissae) do

$$
\text { Train IgANet }\left(\left[\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right],\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right],\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{n}
\end{array}\right] ;\left(\xi_{k}, \eta_{k}\right)_{k=1}^{N_{\text {samples }}}\right) \mapsto\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]
$$

EndFor

EndFor

Details:

- 7×7 bi-cubic tensor-product B-splines for \mathbf{x}_{h} and u_{h}, C^{2}-continuous
- TensorFlow 2.6, 7-layer neural network with 50 neurons per layer and ReLU activation function (except for output layer), Adam optimizer, 30.000 epochs, training is stopped after 3.000 epochs w/o improvement of the loss value

[^1]
Test case: Poisson's equation on a variable annulus

Preliminary results

Master thesis work by Frank van Ruiten, TU Delft

Preliminary results

Master thesis work by Frank van Ruiten, TU Delft

Preliminary results

Master thesis work by Frank van Ruiten, TU Delft

Preliminary results

Master thesis work by Frank van Ruiten, TU Delft

Preliminary results

Master thesis work by Frank van Ruiten, TU Delft

Let's have a look under the hood

Computational costs of PINN vs. IgANets, implementation aspects, ...

Computational costs

Working principle of PINNs

$$
\mathbf{x} \mapsto u(\mathbf{x}):=\mathrm{NN}(\mathbf{x} ; f, g, G)=\sigma_{L}\left(\mathbf{W}_{L} \sigma\left(\ldots\left(\sigma_{1}\left(\mathbf{W}_{1} \mathbf{x}+\mathbf{b}_{1}\right)\right)\right)+\mathbf{b}_{L}\right)
$$

- use AD engine (automated chain rule) to compute derivatives, e.g., $u_{x}=\mathrm{NN}_{x}$
- use AD engine on top of AD tree (!!!) to compute gradients w.r.t. weights for training

Computational costs

Working principle of PINNs

$$
\mathbf{x} \mapsto u(\mathbf{x}):=\mathrm{NN}(\mathbf{x} ; f, g, G)=\sigma_{L}\left(\mathbf{W}_{L} \sigma\left(\ldots\left(\sigma_{1}\left(\mathbf{W}_{1} \mathbf{x}+\mathbf{b}_{1}\right)\right)\right)+\mathbf{b}_{L}\right)
$$

- use AD engine (automated chain rule) to compute derivatives, e.g., $u_{x}=\mathrm{NN}_{x}$
- use AD engine on top of AD tree (!!!) to compute gradients w.r.t. weights for training

Working principle of $\lg A N e t s$

$$
\left[\mathbf{x}_{i}, f_{i}, g_{i}\right]_{i=1, \ldots, n} \mapsto\left[u_{i}\right]_{i=1, \ldots, n}:=\mathrm{NN}\left(\mathbf{x}_{i}, f_{i}, g_{i}, i=1, \ldots, n\right)
$$

- use mathematics to compute derivatives, e.g., $\nabla_{\mathbf{x}} u=\left(\sum_{i=1}^{n} \nabla_{\boldsymbol{\xi}} B_{i}(\boldsymbol{\xi}) u_{i}\right) J_{G}^{-t}$
- use AD to compute gradients w.r.t. weights for training, i.e. (illustrated in 1D)

$$
\frac{\partial\left(\mathrm{d}_{\xi}^{r} u(\xi)\right)}{\partial w_{k}}=\sum_{i=1}^{n} \frac{\partial\left(\mathrm{~d}_{\xi}^{r} b_{i}^{p} u_{i}\right)}{\partial w_{k}}=\sum_{i=1}^{n} \mathrm{~d}_{\xi}^{r+1} b^{p} \frac{\partial \xi}{\partial w_{k}} u_{i}+\sum_{i=1}^{n} \mathrm{~d}_{\xi}^{r} b_{i}^{p} \frac{\partial u_{i}}{\partial w_{k}}
$$

Towards an ML-friendly B-spline evaluation

Major computational task (illustrated in 1D)

Given sampling point $\xi \in\left[\xi_{i}, \xi_{i+1}\right)$ compute for $r \geq 0$

$$
\mathrm{d}_{\xi}^{r} u(\xi)=\left[\mathrm{d}_{\xi}^{r} b_{i-p}^{p}(\xi), \ldots, \mathrm{d}_{\xi}^{r} b_{i}^{p}(\xi)\right] \cdot \underbrace{\left[u_{i-p}, \ldots, u_{i}\right]}_{\text {network's output }}
$$

Textbook derivatives

$$
\mathrm{d}_{\xi}^{r} b_{i}^{p}(\xi)=(p-1)\left(\frac{-\mathrm{d}_{\xi}^{r-1} b_{i+1}^{p-1}(\xi)}{\xi_{i+p}-\xi_{i+1}}+\frac{\mathrm{d}_{\xi}^{r-1} b_{i}^{p-1}(\xi)}{\xi_{i+p-1}-\xi_{i}}\right)
$$

with

$$
b_{i}^{p}(\xi)=\frac{\xi-\xi_{i}}{\xi_{i+p}-\xi_{i}} b_{i}^{p-1}(\xi)+\frac{\xi_{i+p+1}-\xi}{\xi_{i+p+1}-\xi_{i+1}} b_{i+1}^{p-1}(\xi), \quad b_{i}^{0}(\xi)= \begin{cases}1 & \text { if } \xi_{i} \leq \xi<\xi_{i+1} \\ 0 & \text { otherwise }\end{cases}
$$

Towards an ML-friendly B-spline evaluation

Matrix representation of B-splines (Lyche and Morken 2011)

$$
\left[\mathrm{d}_{\xi}^{r} b_{i-p}^{p}(\xi), \ldots, \mathrm{d}_{\xi}^{r} b_{i}^{p}(\xi)\right]=\frac{p!}{(p-r)!} R_{1}(\xi) \cdots R_{p-r}(\xi) \mathrm{d}_{\xi} R_{p-r+1} \cdots \mathrm{~d}_{\xi} R_{p}
$$

with $k \times k+1$ matrices $R_{k}(\xi)$, e.g.

$$
\begin{aligned}
R_{1}(\xi) & =\left[\begin{array}{lll}
\frac{\xi_{i+1}-\xi}{\xi_{i+1}-\xi_{i}} & \frac{\xi-\xi_{i}}{\xi_{i+1}-\xi_{i}}
\end{array}\right] \\
R_{2}(\xi) & =\left[\begin{array}{ccc}
\frac{\xi_{i+1}-\xi}{\xi_{i+1}-\xi_{i-1}} & \frac{\xi-\xi_{i-1}}{\xi_{i+1}-\xi_{i-1}} & 0 \\
0 & \frac{\xi_{i+2}-\xi}{\xi_{i+2}-\xi_{i}} & \frac{\xi-\xi_{i}}{\xi_{i+2}-\xi_{i}}
\end{array}\right] \\
R_{3}(\xi) & =\ldots
\end{aligned}
$$

An ML-friendly B-spline evaluation

Algorithm 2.22 from (Lyche and Morken 2011)
(1) $\mathbf{b}=1$
(2) For $k=1, \ldots, p-r$
(1) $\mathbf{t}_{1}=\left(\xi_{i-k+1}, \ldots, \xi_{i}\right)$
(2) $\mathbf{t}_{2}=\left(\xi_{i+1}, \ldots, \xi_{i+k}\right)$
(3) $\mathbf{w}=\left(\xi-\mathbf{t}_{1}\right) \div\left(\mathbf{t}_{2}-\mathbf{t}_{1}\right)$
(4) $\mathbf{b}=[(1-\mathbf{w}) \odot \mathbf{b}, 0]+[0, \mathbf{w} \odot \mathbf{b}]$
(3) For $k=p-r+1, \ldots, p$
(1) $\mathbf{t}_{1}=\left(\xi_{i-k+1}, \ldots, \xi_{i}\right)$
(2) $\mathbf{t}_{2}=\left(\xi_{i+1}, \ldots, \xi_{i+k}\right)$
(3) $\mathbf{w}=1 \div\left(\mathbf{t}_{2}-\mathbf{t}_{1}\right)$
(4) $\mathbf{b}=[-\mathbf{w} \odot \mathbf{b}, 0]+[0, \mathbf{w} \odot \mathbf{b}]$
where \div and \odot denote the element-wise division and multiplication of vectors, respectively.

An ML-friendly B-spline evaluation

Algorithm 2.22 from (Lyche and Morken 2011) with slight modifications
(1) $\mathbf{b}=1$
(2) For $k=1, \ldots, p-r$
(1) $\mathbf{t}_{1}=\left(\xi_{i-k+1}, \ldots, \xi_{i}\right)$
(2) $\mathbf{t}_{21}=\left(\xi_{i+1}, \ldots, \xi_{i+k}\right)-\mathbf{t}_{1}$
(3) mask $=\left(\mathrm{t}_{21}<\mathrm{tol}\right)$
(4) $\mathbf{w}=\left(\xi-\mathbf{t}_{1}-\right.$ mask $) \div\left(\mathbf{t}_{21}\right.$ - mask $)$
(5) $\mathbf{b}=[(1-\mathbf{w}) \odot \mathbf{b}, 0]+[0, \mathbf{w} \odot \mathbf{b}]$
(3) For $k=p-r+1, \ldots, p$
(1) $\mathbf{t}_{1}=\left(\xi_{i-k+1}, \ldots, \xi_{i}\right)$
(2) $\mathbf{t}_{21}=\left(\xi_{i+1}, \ldots, \xi_{i+k}\right)-\mathbf{t}_{1}$
(3) mask $=\left(\mathrm{t}_{21}<\mathrm{tol}\right)$
(4) $\mathbf{w}=(1$ - mask $) \div\left(\mathbf{t}_{21}\right.$ - mask $)$
(5) $\mathbf{b}=[-\mathbf{w} \odot \mathbf{b}, 0]+[0, \mathbf{w} \odot \mathbf{b}]$
where \div and \odot denote the element-wise division and multiplication of vectors, respectively.

Performance evaluation - bivariate B-splines

\square Tesla V100S PCle 32G AMD EPYC 7402 24-Core Processor \quad reference

Performance evaluation - trivariate B-splines

\square Tesla V100S PCle 32G AMD EPYC 7402 24-Core Processor \quad reference

Performance evaluation - bivariate B-splines

- Fujitsu A64FX 48-Core Processor \qquad AMD EPYC 7402 24-Core Processor \qquad reference Ookami Cluster @ Stony Brook: gcc12.2 '-Ofast -mcpu=a64fx'

Performance evaluation - trivariate B-splines

Interactive Design-through-Analysis

Front-ends

- gustaf
by TU Vienna

Three.js modeler
by SURF

WebSockets protocol for interactive spline modeling and visualization

Back-ends

? ? ? ? ? ?

Conclusion and outlook

IgANets combine classical numerics with physics-informed machine learning and may finally enable integrated and interactive design-through-analysis workflows

WIP

- interactive DTA workflow (/w SURF)
- use of $\lg A$ and $\lg A N$ ets in concert
- transfer learning upon basis refinement

Short paper: Möller, Toshniwal, van Ruiten: Physics-informed machine learning embedded into isogeometric analysis, 2021. 鲯

What's next

(1) Journal paper and code release (including Python API) in preparation
(2) CISM-ECCOMAS Summer School Scientific Machine Learning in Design Optimization

IgANets: Physics-Informed Machine Learning Embedded Into Isogeometric Analysis

Matthias Möller

Department of Applied Mathematics
Delft University of Technology, The Netherlands

Aromath seminar
25 April 2023, Sophia Antipolis Cedex, France
Joint work with Deepesh Toshniwal, Frank van Ruiten (TUD),
Casper van Leeuwen, Paul Melis (SURF), Jaewook Lee (TU Vienna)
Thank you very much!

[^0]: Photo: Siemens - Simulation for Design Engineers

[^1]: Master thesis work by Frank van Ruiten, TU Delft

