
IgANets: Physics-Informed Machine Learning
Embedded Into Isogeometric Analysis

Matthias Möller

Department of Applied Mathematics
Delft University of Technology, The Netherlands

Aromath seminar
25 April 2023, Sophia Antipolis Cedex, France

Joint work with Deepesh Toshniwal, Frank van Ruiten (TUD),
Casper van Leeuwen, Paul Melis (SURF), Jaewook Lee (TU Vienna)

1 / 30

Design-through-Analysis

2 / 30

Design-through-Analysis 1.0
“[...] the potential value of design through analysis was demonstrated by a significant

reduction in structural weight of the project vehicle.” EXPERIMENTAL AUTOMOBILE STRUCTURE 2 1 93

 * GRID POINT

 • ASET GRID POINT

 Fig. 14 - Beam elements on the CVS analytical
 model

 points in Fig. 14, while usually only one
 normal (to plate) displacement was kept on the
 plate grid points. This resulted in a total
 of 193 degrees of freedom for the symmetric
 case and 174 for the antisymmetric case (the
 difference is due to the grid points in the
 centerline which has one degree of freedom less
 in the ASET for the antisymmetric case) . All
 dynamic analyses were performed with the NASTRAN
 computer program using the Given* s eigenvalue
 extraction method (see Ref. 11 for more details).
 Table II gives some of the data for the dynamic
 models .

 Two different cases for the basic (body-
 in-white) structure have been analyzed; case 1
 refers to the standard modeling of plate
 elements, and case 2 to the models incorpo-
 rating the reduced membrane stiffness for some
 of the plate elements. The computed modes and
 frequencies are given in Table III. All struc-
 tural modes less than 75 Hz are included. It

 should be remembered, however, that the dynamic
 model was made to give good results for the

 major modes, and one would generally require a
 much more detailed model in order to obtain
 reasonable values for local modes. The fre-

 quencies given for all the local modes should
 only be considered as an indication that local
 flexibilities are low, and that panel vibration
 or local modes might occur in the location
 indicated at approximately the given frequency.

 Case 2 is considered the best model as it

 is based upon the technique successfully used
 in several earlier studies. It is evident

 (Table III) that a general reduction in fre-
 quencies was obtained by reducing the membrane
 stiffness in some of the plate elements,
 especially for the second beaming and torsion
 modes.

 Characteristics of the first beaming and
 torsion modes are:

 First Beaming Mode
 - very typical shape with the nodal

 points close to the suspension lines.
 - large curvature at the top of the A-

 pillar (looks almost like a hinge)

 TABLE II

 NASTRAN DATA FOR THE DYNAMIC
 ANALYSIS OF THE CVS VEHICLE

 Case: Case:
 Bas ^Structure Full Mass Structure

 Symmetric Symmetric

 Numerical Data:

 No. of grid points 940 1006

 Total dof* (GSET) 5640 6024

 MPC reduction (MSET) 306 463

 SPC reduction (SSET) 1316 1351
 OMIT reduction (0SET) 3825 4044

 Dynamic dof (ASET) 193 166

 Core requested 360K 500K

 *

 Degrees of freedom

This content downloaded from 138.96.48.184 on Mon, 24 Apr 2023 07:31:23 UTC
All use subject to https://about.jstor.org/terms

James A. Augustitus, Mounir M. Kamal, and Larry J. Howell. Design through analysis of an
experimental automobile structure. SAE Transactions, 86:2186-2198, 1977

2 / 30

Design-through-Analysis 2.0

following examples may be mentioned: shell buckling analysis is
very sensitive to geometric imperfections, boundary layer phe-
nomena and lift and drag are sensitive to precise geometry of aero-
dynamic and hydrodynamic configurations, and sliding contact
between bodies cannot be accurately represented without precise
geometric descriptions. Automatic adaptive mesh refinement has
not been as widely adopted in industry as one might assume from

the extensive academic literature because mesh refinement re-
quires access to the exact geometry, and thus it also requires seam-
less and automatic communication with CAD, which simply does
not exist. Without accurate geometry and mesh adaptivity, conver-
gence and -precision results are in many cases impossible.

Deficiencies in current engineering analysis procedures also
preclude successful application of important pace setting technol-

Fig. 1. Engineering designs are becoming increasingly complex. As the number of parts comprising an object increases, so too does the amount of time required for it to be
manufactured. Such growth in complexity makes analysis a time consuming and expensive endeavor. (Courtesy of General Dynamics/Electric Boat Corporation.)

Fig. 2. Estimation of the relative time costs of each component of the model generation and analysis process at Sandia National Laboratories. Note that the process of building
the model completely dominates the time spent performing analysis. (Courtesy of Ted Blacker, Sandia National Laboratories.)

2 Y. Bazilevs et al. / Comput. Methods Appl. Mech. Engrg. xxx (2009) xxx–xxx

ARTICLE IN PRESS

Please cite this article in press as: Y. Bazilevs et al., Isogeometric analysis using T-splines, Comput. Methods Appl. Mech. Engrg. (2009), doi:10.1016/
j.cma.2009.02.036

Vision: seamless design and analysis workflows without time-consuming (often manual)
geometry cleaning and meshing → Isogeometric Analysis (Hughes et al. ’05)

2 / 30

Interactive Design-through-Analysis

Vision: fast interactive qualitative analysis and accurate quantitative analysis within the
same computational framework with seamless switching between both approaches

Photo: Siemens – Simulation for Design Engineers

3 / 30

Physics-informed machine learning

PINN (Raissi et al. 2018): learns the (initial-)boundary-value problem

 easy to implement for ‘any‘ PDE
because AD magic does it for you

 combined un-/supervised learning
 poor extrapolation/generalization
 point-based approach requires

re-evaluation of NN at every point
 rudimentary convergence theory

DeepONet (Lu et al. 2019): learns the differential operator

Gθ(u)(y) =
q∑

k=1
bk(u(x1), u(x2), . . . , u(xm))︸ ︷︷ ︸

branch

tk(y)︸ ︷︷ ︸
trunk

Don’t we know good bases?

4 / 30

Physics-informed machine learning

PINN (Raissi et al. 2018): learns the (initial-)boundary-value problem

 easy to implement for ‘any‘ PDE
because AD magic does it for you

 combined un-/supervised learning
 poor extrapolation/generalization
 point-based approach requires

re-evaluation of NN at every point
 rudimentary convergence theory

DeepONet (Lu et al. 2019): learns the differential operator

Gθ(u)(y) =
q∑

k=1
bk(u(x1), u(x2), . . . , u(xm))︸ ︷︷ ︸

branch

tk(y)︸ ︷︷ ︸
trunk

Don’t we know good bases?

4 / 30

Physics-informed machine learning

PINN (Raissi et al. 2018): learns the (initial-)boundary-value problem

 easy to implement for ‘any‘ PDE
because AD magic does it for you

 combined un-/supervised learning
 poor extrapolation/generalization
 point-based approach requires

re-evaluation of NN at every point
 rudimentary convergence theory

DeepONet (Lu et al. 2019): learns the differential operator

Gθ(u)(y) =
q∑

k=1
bk(u(x1), u(x2), . . . , u(xm))︸ ︷︷ ︸

branch

tk(y)︸ ︷︷ ︸
trunk

Don’t we know good bases?

4 / 30

Physics-informed machine learning

PINN (Raissi et al. 2018): learns the (initial-)boundary-value problem

 easy to implement for ‘any‘ PDE
because AD magic does it for you

 combined un-/supervised learning
 poor extrapolation/generalization
 point-based approach requires

re-evaluation of NN at every point
 rudimentary convergence theory

DeepONet (Lu et al. 2019): learns the differential operator

Gθ(u)(y) =
q∑

k=1
bk(u(x1), u(x2), . . . , u(xm))︸ ︷︷ ︸

branch

tk(y)︸ ︷︷ ︸
trunk

Don’t we know good bases?

4 / 30

Bases
AI/ML community: Fourier series, orthogonal polynomials, problem-specific basis
functions → impractical for practical computer-aided geometric design

FEM community: plethora of finite element basis functions defined on the computational
mesh → impractical for a priori training of generic networks

CAGD community: trimmed NURBS → maybe, but we’re not yet there

IGA community: multi-patch tensor-product or locally adaptive B-splines → Let’s do it!

5 / 30

Bases
AI/ML community: Fourier series, orthogonal polynomials, problem-specific basis
functions → impractical for practical computer-aided geometric design

FEM community: plethora of finite element basis functions defined on the computational
mesh → impractical for a priori training of generic networks

CAGD community: trimmed NURBS → maybe, but we’re not yet there

IGA community: multi-patch tensor-product or locally adaptive B-splines → Let’s do it!

5 / 30

Bases
AI/ML community: Fourier series, orthogonal polynomials, problem-specific basis
functions → impractical for practical computer-aided geometric design

FEM community: plethora of finite element basis functions defined on the computational
mesh → impractical for a priori training of generic networks

CAGD community: trimmed NURBS → maybe, but we’re not yet there

IGA community: multi-patch tensor-product or locally adaptive B-splines → Let’s do it!

5 / 30

Bases
AI/ML community: Fourier series, orthogonal polynomials, problem-specific basis
functions → impractical for practical computer-aided geometric design

FEM community: plethora of finite element basis functions defined on the computational
mesh → impractical for a priori training of generic networks

CAGD community: trimmed NURBS → maybe, but we’re not yet there

IGA community: multi-patch tensor-product or locally adaptive B-splines → Let’s do it!

5 / 30

B-spline basis functions

Cox de Boor recursion formula

knot vector Ξ = [0, 1, 2, 3, 4]

b0
i (ξ) =

{
1 if ξi ≤ ξ < ξi+1
0 otherwise

bp
i (ξ) = ξ − ξi

ξi+p − ξi
bp−1

i (ξ)

+ ξi+p+1 − ξ

ξi+p+1 − ξi+1
bp−1

i+1 (ξ)

Many good properties: compact support [ξi, ξi+p+1), positive function values over
support interval, derivatives of B-splines are combinations of lower-order B-splines, ...

6 / 30

B-spline basis functions

Cox de Boor recursion formula

knot vector Ξ = [0, 1, 2, 3, 4]

b0
i (ξ) =

{
1 if ξi ≤ ξ < ξi+1
0 otherwise

bp
i (ξ) = ξ − ξi

ξi+p − ξi
bp−1

i (ξ)

+ ξi+p+1 − ξ

ξi+p+1 − ξi+1
bp−1

i+1 (ξ)

Many good properties: compact support [ξi, ξi+p+1), positive function values over
support interval, derivatives of B-splines are combinations of lower-order B-splines, ...

6 / 30

Isogeometric Analysis
Paradigm: represent ‘everything’ in terms of tensor products of B-spline basis functions

Bi(ξ, η) := bp
i (ξ) · bq

k(η), i := (k − 1) · ni + i, 1 ≤ i ≤ ni, 1 ≤ k ≤ nk,

2.2. A short introduction on NURBS functions

A knot vector N ¼ n1; n2; . . . ; nnþpþ1
! "

is defined as a sequence of
knot value ni 2; i ¼ 1; . . . ;nþ p. An open knot, i.e, the first and the
last knots are repeated p + 1 times, is used. A B-spline basis
function forms C1 continuous inside a knot span and Cp#1 contin-
uous at a single knot. The B-spline basis functions are constructed
by the following recursion formula

Ni;pðnÞ ¼
n# ni

niþp # ni
Ni;p#1ðnÞ þ

niþpþ1 # n
niþpþ1 # niþ1

Niþ1;p#1ðnÞ

with p > 0 ð14Þ

with p = 0,

Ni;0ðnÞ ¼
1 if ni 6 n < niþ1

0 otherwise

#
ð15Þ

Two-dimensional B-spline basis functions are defined by the
tensor product of basis functions in two parametric dimensions n
and g with two knot vectors N ¼ n1; n2 . . . ; nnþpþ1

$ %
and

H ¼ g1;g2 . . . ;gmþqþ1

n o
as

NAðn;gÞ ¼ Ni;pðnÞMj;qðgÞ ð16Þ

Fig. 1 illustrates the set of one-dimensional and two-dimen-
sional B-spline basis functions.

To model exactly curved geometries (e.g. circles, cylinders,
spheres, etc.), each control point A has additional value called an
individual weight fA. We denote Non-uniform Rational B-splines
(NURBS) functions which are expressed as

RA n;gð Þ ¼ NAfAPm&n
A NA n;gð ÞfA

ð17Þ

It is evident that the B-spline function is obtained when the
individual weight of the control points is constant.

2.3. Extended isogeometric finite elements

The idea of XFEM is to introduce physical functions with a priori
knowledge of the problem field to the approximation [14]. The
basic difference between XFEM and FEM is that the former involves
the solution of the additional parameters blended to the approxi-
mation by the partition of unity. Similar to the enrichment
functions used in XFEM, the XIGA velocity field of the cracked
solids can be expressed as

_uhðxÞ ¼
X

I2S
NI xð Þ _qI þ

X

J2Sc

NJ xð Þ H xð Þ # H xJ
& '& '

_aJ

þ
X

K2St

NK xð Þ
X4

a¼1

Fa xð Þ # Fa xKð Þð Þ _ba
K ð18Þ

Fig. 1. 1D and 2D B-spline basis functions.

Fig. 2. Illustration of enriched control points for a quadratic NURBS net.

H. Nguyen-Xuan et al. / Theoretical and Applied Fracture Mechanics 72 (2014) 13–27 15

bp
i (ξ) bq

k(η)

Bi(ξ, η)

Many more good properties: partition of unity
n∑

i=1
Bi(ξ, η) ≡ 1, Cp−1 continuity, ...

7 / 30

Isogeometric Analysis
Paradigm: represent ‘everything’ in terms of tensor products of B-spline basis functions

Bi(ξ, η) := bp
i (ξ) · bq

k(η), i := (k − 1) · ni + i, 1 ≤ i ≤ ni, 1 ≤ k ≤ nk,

2.2. A short introduction on NURBS functions

A knot vector N ¼ n1; n2; . . . ; nnþpþ1
! "

is defined as a sequence of
knot value ni 2; i ¼ 1; . . . ;nþ p. An open knot, i.e, the first and the
last knots are repeated p + 1 times, is used. A B-spline basis
function forms C1 continuous inside a knot span and Cp#1 contin-
uous at a single knot. The B-spline basis functions are constructed
by the following recursion formula

Ni;pðnÞ ¼
n# ni

niþp # ni
Ni;p#1ðnÞ þ

niþpþ1 # n
niþpþ1 # niþ1

Niþ1;p#1ðnÞ

with p > 0 ð14Þ

with p = 0,

Ni;0ðnÞ ¼
1 if ni 6 n < niþ1

0 otherwise

#
ð15Þ

Two-dimensional B-spline basis functions are defined by the
tensor product of basis functions in two parametric dimensions n
and g with two knot vectors N ¼ n1; n2 . . . ; nnþpþ1

$ %
and

H ¼ g1;g2 . . . ;gmþqþ1

n o
as

NAðn;gÞ ¼ Ni;pðnÞMj;qðgÞ ð16Þ

Fig. 1 illustrates the set of one-dimensional and two-dimen-
sional B-spline basis functions.

To model exactly curved geometries (e.g. circles, cylinders,
spheres, etc.), each control point A has additional value called an
individual weight fA. We denote Non-uniform Rational B-splines
(NURBS) functions which are expressed as

RA n;gð Þ ¼ NAfAPm&n
A NA n;gð ÞfA

ð17Þ

It is evident that the B-spline function is obtained when the
individual weight of the control points is constant.

2.3. Extended isogeometric finite elements

The idea of XFEM is to introduce physical functions with a priori
knowledge of the problem field to the approximation [14]. The
basic difference between XFEM and FEM is that the former involves
the solution of the additional parameters blended to the approxi-
mation by the partition of unity. Similar to the enrichment
functions used in XFEM, the XIGA velocity field of the cracked
solids can be expressed as

_uhðxÞ ¼
X

I2S
NI xð Þ _qI þ

X

J2Sc

NJ xð Þ H xð Þ # H xJ
& '& '

_aJ

þ
X

K2St

NK xð Þ
X4

a¼1

Fa xð Þ # Fa xKð Þð Þ _ba
K ð18Þ

Fig. 1. 1D and 2D B-spline basis functions.

Fig. 2. Illustration of enriched control points for a quadratic NURBS net.

H. Nguyen-Xuan et al. / Theoretical and Applied Fracture Mechanics 72 (2014) 13–27 15

bp
i (ξ) bq

k(η)

Bi(ξ, η)

Many more good properties: partition of unity
n∑

i=1
Bi(ξ, η) ≡ 1, Cp−1 continuity, ...

7 / 30

Isogeometric Analysis
Geometry: bijective mapping from the unit square to the physical domain Ωh ⊂ Rd

xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · xi ∀(ξ, η) ∈ [0, 1]2 =: Ω̂

• the shape of Ωh is fully specified by the
set of control points xi ∈ Rd

• interior control points must be chosen
such that ‘grid lines’ do not fold as this
violates the bijectivity of xh : Ω̂ → Ωh

• refinement in h (knot insertion) and p
(order elevation) preserves the shape of
Ωh and can be used to generate finer
computational ‘grids’ for the analysis

8 / 30

Isogeometric Analysis
Geometry: bijective mapping from the unit square to the physical domain Ωh ⊂ Rd

xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · xi ∀(ξ, η) ∈ [0, 1]2 =: Ω̂

• the shape of Ωh is fully specified by the
set of control points xi ∈ Rd

• interior control points must be chosen
such that ‘grid lines’ do not fold as this
violates the bijectivity of xh : Ω̂ → Ωh

• refinement in h (knot insertion) and p
(order elevation) preserves the shape of
Ωh and can be used to generate finer
computational ‘grids’ for the analysis

8 / 30

Isogeometric Analysis
Geometry: bijective mapping from the unit square to the physical domain Ωh ⊂ Rd

xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · xi ∀(ξ, η) ∈ [0, 1]2 =: Ω̂

• the shape of Ωh is fully specified by the
set of control points xi ∈ Rd

• interior control points must be chosen
such that ‘grid lines’ do not fold as this
violates the bijectivity of xh : Ω̂ → Ωh

• refinement in h (knot insertion) and p
(order elevation) preserves the shape of
Ωh and can be used to generate finer
computational ‘grids’ for the analysis

8 / 30

Isogeometric Analysis
Model problem: Poisson’s equation

−∆uh = fh in Ωh, uh = gh on ∂Ωh

with

(geometry) xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · xi ∀(ξ, η) ∈ [0, 1]2

(solution) uh ◦ xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · ui ∀(ξ, η) ∈ [0, 1]2

(r.h.s vector) fh ◦ xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · fi ∀(ξ, η) ∈ [0, 1]2

(boundary conditions) gh ◦ xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · gi ∀(ξ, η) ∈ ∂[0, 1]2

9 / 30

Isogeometric Analysis
Abstract representation
Given xi (geometry), fi (r.h.s. vector), and gi (boundary conditions), computeu1

...
un

 = A−1

x1

...
xn

 ,

g1
...

gn

 · b

x1

...
xn

 ,

f1
...

fn

 ,

g1
...

gn

Any point of the solution can afterwards be obtained by a simple function evaluation

(ξ, η) ∈ [0, 1]2 7→ uh ◦ xh(ξ, η) = [B1(ξ, η), . . . , Bn(ξ, η)] ·

u1
...

un

Let us interpret the sets of B-spline coefficients {xi}, {fi}, and {gi} as an efficient
encoding of our PDE problem that is fed into our IgA machinery as input.
The output of our IgA machinery are the B-spline coefficients {ui} of the solution.

10 / 30

Isogeometric Analysis
Abstract representation
Given xi (geometry), fi (r.h.s. vector), and gi (boundary conditions), computeu1

...
un

 = A−1

x1

...
xn

 ,

g1
...

gn

 · b

x1

...
xn

 ,

f1
...

fn

 ,

g1
...

gn

Any point of the solution can afterwards be obtained by a simple function evaluation

(ξ, η) ∈ [0, 1]2 7→ uh ◦ xh(ξ, η) = [B1(ξ, η), . . . , Bn(ξ, η)] ·

u1
...

un

Let us interpret the sets of B-spline coefficients {xi}, {fi}, and {gi} as an efficient
encoding of our PDE problem that is fed into our IgA machinery as input.
The output of our IgA machinery are the B-spline coefficients {ui} of the solution.

10 / 30

Isogeometric Analysis + Physics-Informed Machine Learning
IgANet: replace computation

by physics-informed machine learning

u1
...

un

 = A−1

x1

...
xn

 ,

g1
...

gn

 · b

x1

...
xn

 ,

f1
...

fn

 ,

g1
...

gn

Compute the solution from the trained neural network as follows

uh(ξ, η) = [B1(ξ, η), . . . , Bn(ξ, η)] ·

u1
...

un

 ,

u1
...

un

 = IgANet

x1

...
xn

 ,

f1
...

fn

 ,

g1
...

gn

11 / 30

Isogeometric Analysis + Physics-Informed Machine Learning
IgANet: replace computation by physics-informed machine learningu1

...
un

 = IgANet

x1

...
xn

 ,

f1
...

fn

 ,

g1
...

gn

 ; (ξ(k), η(k))Nsamples
k=1

Compute the solution from the trained neural network as follows

uh(ξ, η) = [B1(ξ, η), . . . , Bn(ξ, η)] ·

u1
...

un

 ,

u1
...

un

 = IgANet

x1

...
xn

 ,

f1
...

fn

 ,

g1
...

gn

11 / 30

Isogeometric Analysis + Physics-Informed Machine Learning
IgANet: replace computation by physics-informed machine learningu1

...
un

 = IgANet

x1

...
xn

 ,

f1
...

fn

 ,

g1
...

gn

 ; (ξ(k), η(k))Nsamples
k=1

Compute the solution from the trained neural network as follows

uh(ξ, η) = [B1(ξ, η), . . . , Bn(ξ, η)] ·

u1
...

un

 ,

u1
...

un

 = IgANet

x1

...
xn

 ,

f1
...

fn

 ,

g1
...

gn

11 / 30

IgANet architecture

x1

xn

f1

fn

g1

gn

σ

σ

σ

σ

σ

σ

σ

σ

σ

u1

un

loss = lossPDE + lossBDR

loss < ε end training

∂loss
∂(w, b) → update w, b

and continue training

ge
om

et
ry

r.h
.s.

ve
ct

or
bd

r.
co

nd
.

coords (ξ(k), η(k))N
k=1

12 / 30

Loss function
Model problem: Poisson’s equation with Dirichlet boundary conditions

lossPDE = α

NΩ

NΩ∑
k=1

∣∣∣∆ [
uh ◦ xh

(
ξ(k), η(k)

)]
− fh ◦ xh

(
ξ(k), η(k)

)∣∣∣2
lossBDR = β

NΓ

NΓ∑
k=1

∣∣∣uh ◦ xh

(
ξ(k), η(k)

)
− gh ◦ xh

(
ξ(k), η(k)

)∣∣∣2
Express derivatives with respect to physical space variables using the Jacobian J , the
Hessian H and the matrix of squared first derivatives Q (Schillinger et al. 2013):

∂2B
∂x2

∂2B
∂x∂y

∂2B
∂y2

 = Q−⊤

∂2B
∂ξ2

∂2B
∂ξ∂η

∂2B
∂η2

 − H⊤J−⊤

∂B
∂ξ

∂B
∂η

13 / 30

Two-level training strategy
For [x1, . . . , xn] ∈ Sgeo, [f1, . . . , fn] ∈ Srhs, [g1, . . . , gn] ∈ Sbcond do

For a batch of randomly sampled (ξk, ηk) ∈ [0, 1]2 (or the Greville abscissae) do

Train IgANet

x1

...
xn

 ,

f1
...

fn

 ,

g1
...

gn

 ; (ξk, ηk)Nsamples
k=1

 7→

u1
...

un

EndFor

EndFor

Details:
• 7 × 7 bi-cubic tensor-product B-splines for xh and uh, C2-continuous
• TensorFlow 2.6, 7-layer neural network with 50 neurons per layer and ReLU activation

function (except for output layer), Adam optimizer, 30.000 epochs, training is stopped
after 3.000 epochs w/o improvement of the loss value

Master thesis work by Frank van Ruiten, TU Delft

14 / 30

Test case: Poisson’s equation on a variable annulus

g ≡ 0
g

≡
0,

1,
. .

. ,
11

0rad

1rad2rad

3rad

4rad

f ≡ 0, 1, . . . , 11

Master thesis work by Frank van Ruiten, TU Delft

15 / 30

Preliminary results

x0.0 0.2 0.4 0.6 0.8 1.0

y

0.0

0.2

0.4

0.6

0.8

1.0

z

0.00

0.05

0.10

0.15

0.20

0.25

0.30

g ≡ 0

g
≡

0

0rad

1rad2rad

3rad

4rad

f ≡ 5

Master thesis work by Frank van Ruiten, TU Delft

16 / 30

Preliminary results

x

0.0 0.2 0.4 0.6 0.8 1.0

y

0.0
0.2

0.4
0.6

0.8
1.0

z

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

g ≡ 0

g
≡

1.4

0rad

1rad2rad

3rad

4rad

f ≡ 5

Master thesis work by Frank van Ruiten, TU Delft

16 / 30

Preliminary results

x

−1.00
−0.75

−0.50
−0.25

0.00
0.25

0.50
0.75

1.00
y

−1.00−0.75−0.50−0.250.000.25
0.50

0.75
1.00

z

0.0
0.5
1.0
1.5
2.0
2.5

0.5

1.0

1.5

2.0

2.5

g ≡ 0

g ≡ 2.5

0rad

1rad2rad

3rad

4rad

f ≡ 3.3

Master thesis work by Frank van Ruiten, TU Delft

17 / 30

Preliminary results

x

−1.00
−0.75

−0.50
−0.25

0.00
0.25

0.50
0.75

1.00
y

−1.00−0.75−0.50−0.250.000.250.50
0.75

1.00

z

0.0
0.5
1.0
1.5
2.0
2.5

0.5

1.0

1.5

2.0

2.5

g ≡ 0

g ≡ 2.5

0rad

1rad2rad

3rad

4rad

f ≡ 8.7

Master thesis work by Frank van Ruiten, TU Delft

17 / 30

Preliminary results

x

−1.00
−0.75

−0.50
−0.25

0.00
0.25

0.50
0.75

1.00
y

−1.00−0.75−0.50−0.250.000.25
0.50

0.75
1.00

z

0.0
0.5
1.0
1.5
2.0
2.5
3.0

0.5

1.0

1.5

2.0

2.5

g ≡ 0

g ≡ 2.5

0rad

1rad2rad

3rad

4rad

f ≡ 15.5

Master thesis work by Frank van Ruiten, TU Delft

17 / 30

Let’s have a look under the hood

Computational costs of PINN vs. IgANets, implementation aspects, ...

18 / 30

Computational costs
Working principle of PINNs

x 7→ u(x) := NN(x; f, g, G) = σL(WLσ(. . . (σ1(W1x + b1))) + bL)

• use AD engine (automated chain rule) to compute derivatives, e.g., ux = NNx

• use AD engine on top of AD tree (!!!) to compute gradients w.r.t. weights for training

Working principle of IgANets

[xi, fi, gi]i=1,...,n 7→ [ui]i=1,...,n := NN(xi, fi, gi, i = 1, . . . , n)

• use mathematics to compute derivatives, e.g., ∇xu = (
∑n

i=1 ∇ξBi(ξ)ui) J−t
G

• use AD to compute gradients w.r.t. weights for training, i.e. (illustrated in 1D)

∂(dr
ξu(ξ))

∂wk
=

n∑
i=1

∂(dr
ξbp

i ui)
∂wk

=
���������XXXXXXXXX

n∑
i=1

dr+1
ξ bp

i

∂ξ

∂wk
ui +

n∑
i=1

dr
ξbp

i

∂ui

∂wk

19 / 30

Computational costs
Working principle of PINNs

x 7→ u(x) := NN(x; f, g, G) = σL(WLσ(. . . (σ1(W1x + b1))) + bL)

• use AD engine (automated chain rule) to compute derivatives, e.g., ux = NNx

• use AD engine on top of AD tree (!!!) to compute gradients w.r.t. weights for training

Working principle of IgANets

[xi, fi, gi]i=1,...,n 7→ [ui]i=1,...,n := NN(xi, fi, gi, i = 1, . . . , n)

• use mathematics to compute derivatives, e.g., ∇xu = (
∑n

i=1 ∇ξBi(ξ)ui) J−t
G

• use AD to compute gradients w.r.t. weights for training, i.e. (illustrated in 1D)

∂(dr
ξu(ξ))

∂wk
=

n∑
i=1

∂(dr
ξbp

i ui)
∂wk

=
���������XXXXXXXXX

n∑
i=1

dr+1
ξ bp

i

∂ξ

∂wk
ui +

n∑
i=1

dr
ξbp

i

∂ui

∂wk

19 / 30

Towards an ML-friendly B-spline evaluation

Major computational task (illustrated in 1D)

Given sampling point ξ ∈ [ξi, ξi+1) compute for r ≥ 0

dr
ξu(ξ) =

[
dr

ξbp
i−p(ξ), . . . , dr

ξbp
i (ξ)

]
· [ui−p, . . . , ui]︸ ︷︷ ︸

network’s output

Textbook derivatives

dr
ξbp

i (ξ) = (p − 1)

−dr−1
ξ bp−1

i+1 (ξ)
ξi+p − ξi+1

+
dr−1

ξ bp−1
i (ξ)

ξi+p−1 − ξi

with

bp
i (ξ) = ξ − ξi

ξi+p − ξi
bp−1

i (ξ) + ξi+p+1 − ξ

ξi+p+1 − ξi+1
bp−1

i+1 (ξ), b0
i (ξ) =

{
1 if ξi ≤ ξ < ξi+1
0 otherwise

20 / 30

Towards an ML-friendly B-spline evaluation
Matrix representation of B-splines (Lyche and Morken 2011)[

dr
ξbp

i−p(ξ), . . . , dr
ξbp

i (ξ)
]

= p!
(p − r)!R1(ξ) · · · Rp−r(ξ)dξRp−r+1 · · · dξRp

with k × k + 1 matrices Rk(ξ), e.g.

R1(ξ) =
[

ξi+1−ξ
ξi+1−ξi

ξ−ξi
ξi+1−ξi

]

R2(ξ) =

 ξi+1−ξ
ξi+1−ξi−1

ξ−ξi−1
ξi+1−ξi−1

0

0 ξi+2−ξ
ξi+2−ξi

ξ−ξi
ξi+2−ξi

R3(ξ) = . . .

21 / 30

An ML-friendly B-spline evaluation
Algorithm 2.22 from (Lyche and Morken 2011)

1 b = 1
2 For k = 1, . . . , p − r

1 t1 = (ξi−k+1, . . . , ξi)
2 t2 = (ξi+1, . . . , ξi+k)
3 w = (ξ − t1) ÷ (t2 − t1)
4 b = [(1 − w) ⊙ b, 0] + [0, w ⊙ b]

3 For k = p − r + 1, . . . , p

1 t1 = (ξi−k+1, . . . , ξi)
2 t2 = (ξi+1, . . . , ξi+k)
3 w = 1 ÷ (t2 − t1)
4 b = [−w ⊙ b, 0] + [0, w ⊙ b]

where ÷ and ⊙ denote the element-wise division and multiplication of vectors, respectively.

22 / 30

An ML-friendly B-spline evaluation
Algorithm 2.22 from (Lyche and Morken 2011) with slight modifications

1 b = 1
2 For k = 1, . . . , p − r

1 t1 = (ξi−k+1, . . . , ξi)
2 t21 = (ξi+1, . . . , ξi+k) − t1
3 mask = (t21 < tol)
4 w = (ξ − t1−mask) ÷ (t21−mask)
5 b = [(1 − w) ⊙ b, 0] + [0, w ⊙ b]

3 For k = p − r + 1, . . . , p

1 t1 = (ξi−k+1, . . . , ξi)
2 t21 = (ξi+1, . . . , ξi+k) − t1
3 mask = (t21 < tol)
4 w = (1−mask) ÷ (t21−mask)
5 b = [−w ⊙ b, 0] + [0, w ⊙ b]

where ÷ and ⊙ denote the element-wise division and multiplication of vectors, respectively.

22 / 30

Performance evaluation - bivariate B-splines

re
f

1e
0

1e
1

1e
2

1e
3

1e
4

2.
5e

4
5e

4
1e

5
2.

5e
5

5e
5

1e
6 re
f

1e
0

1e
1

1e
2

1e
3

1e
4

2.
5e

4
5e

4
1e

5
2.

5e
5

5e
5

1e
6 re
f

1e
0

1e
1

1e
2

1e
3

1e
4

2.
5e

4
5e

4
1e

5
2.

5e
5

5e
5

1e
6 re
f

1e
0

1e
1

1e
2

1e
3

1e
4

2.
5e

4
5e

4
1e

5
2.

5e
5

5e
5

1e
6 re
f

1e
0

1e
1

1e
2

1e
3

1e
4

2.
5e

4
5e

4
1e

5
2.

5e
5

5e
5

1e
6

10−1

100

101

102

103

104

105

106

W
al

lcl
oc

k
tim

e
in

ns
/e

nt
ry

Tesla V100S PCIe 32G AMD EPYC 7402 24-Core Processor reference

p = 1 p = 2 p = 3 p = 4 p = 5

23 / 30

Performance evaluation - trivariate B-splines

re
f

1e
0

1e
1

1e
2

1e
3

1e
4

2.
5e

4
5e

4
1e

5
2.

5e
5

5e
5

1e
6 re
f

1e
0

1e
1

1e
2

1e
3

1e
4

2.
5e

4
5e

4
1e

5
2.

5e
5

5e
5

1e
6 re
f

1e
0

1e
1

1e
2

1e
3

1e
4

2.
5e

4
5e

4
1e

5
2.

5e
5

5e
5

1e
6 re
f

1e
0

1e
1

1e
2

1e
3

1e
4

2.
5e

4
5e

4
1e

5
2.

5e
5

5e
5

1e
6 re
f

1e
0

1e
1

1e
2

1e
3

1e
4

2.
5e

4
5e

4
1e

5
2.

5e
5

5e
5

1e
6

10−1

100

101

102

103

104

105

106

W
al

lcl
oc

k
tim

e
in

ns
/e

nt
ry

Tesla V100S PCIe 32G AMD EPYC 7402 24-Core Processor reference

p = 1 p = 2 p = 3 p = 4 p = 5

24 / 30

Performance evaluation - bivariate B-splines

re
f

1e
0

1e
1

1e
2

1e
3

1e
4

2.
5e

4
5e

4
1e

5
2.

5e
5

5e
5

1e
6 re
f

1e
0

1e
1

1e
2

1e
3

1e
4

2.
5e

4
5e

4
1e

5
2.

5e
5

5e
5

1e
6 re
f

1e
0

1e
1

1e
2

1e
3

1e
4

2.
5e

4
5e

4
1e

5
2.

5e
5

5e
5

1e
6 re
f

1e
0

1e
1

1e
2

1e
3

1e
4

2.
5e

4
5e

4
1e

5
2.

5e
5

5e
5

1e
6 re
f

1e
0

1e
1

1e
2

1e
3

1e
4

2.
5e

4
5e

4
1e

5
2.

5e
5

5e
5

1e
6

10−1

100

101

102

103

104

105

106

W
al

lcl
oc

k
tim

e
in

ns
/e

nt
ry

Fujitsu A64FX 48-Core Processor AMD EPYC 7402 24-Core Processor reference

p = 1 p = 2 p = 3 p = 4 p = 5

Ookami Cluster @ Stony Brook: gcc12.2 ’-Ofast -mcpu=a64fx’

25 / 30

Performance evaluation - trivariate B-splines

re
f

1e
0

1e
1

1e
2

1e
3

1e
4

2.
5e

4
5e

4
1e

5
2.

5e
5

5e
5

1e
6 re
f

1e
0

1e
1

1e
2

1e
3

1e
4

2.
5e

4
5e

4
1e

5
2.

5e
5

5e
5

1e
6 re
f

1e
0

1e
1

1e
2

1e
3

1e
4

2.
5e

4
5e

4
1e

5
2.

5e
5

5e
5

1e
6 re
f

1e
0

1e
1

1e
2

1e
3

1e
4

2.
5e

4
5e

4
1e

5
2.

5e
5

5e
5

1e
6 re
f

1e
0

1e
1

1e
2

1e
3

1e
4

2.
5e

4
5e

4
1e

5
2.

5e
5

5e
5

1e
6

10−1

100

101

102

103

104

105

106

W
al

lcl
oc

k
tim

e
in

ns
/e

nt
ry

Fujitsu A64FX 48-Core Processor AMD EPYC 7402 24-Core Processor reference

p = 1 p = 2 p = 3 p = 4 p = 5

Ookami Cluster @ Stony Brook: gcc12.2 ’-Ofast -mcpu=a64fx’

26 / 30

Interactive Design-through-Analysis

Front-ends

by TU Vienna

Three.js modeler
by SURF

???

WebSockets protocol for interactive spline modeling and visualization

Back-ends

???

27 / 30

Conclusion and outlook
IgANets combine classical numerics with physics-informed machine learning and may finally
enable integrated and interactive design-through-analysis workflows

WIP
• interactive DTA workflow (/w SURF)
• use of IgA and IgANets in concert
• transfer learning upon basis refinement

Short paper: Möller, Toshniwal, van Ruiten: Physics-informed
machine learning embedded into isogeometric analysis, 2021. �

MATHEMATICS:
 K E Y E N A B L I N G T E C H N O L O G Y
F O R S C I E N T I F I C M A C H I N E
L E A R N I N G

—

What’s next
1 Journal paper and code release (including Python API) in preparation
2 CISM-ECCOMAS Summer School Scientific Machine Learning in Design Optimization

28 / 30

IgANets: Physics-Informed Machine Learning
Embedded Into Isogeometric Analysis

Matthias Möller

Department of Applied Mathematics
Delft University of Technology, The Netherlands

Aromath seminar
25 April 2023, Sophia Antipolis Cedex, France

Joint work with Deepesh Toshniwal, Frank van Ruiten (TUD),
Casper van Leeuwen, Paul Melis (SURF), Jaewook Lee (TU Vienna)

Thank you very much!

29 / 30

