|| \mid B ${ }^{\text {Quantum-accelerated scientific computing }}$ finally made easy

Matthias Möller

Delft University of Technology
Delft Institute of Applied Mathematics TUDelft

Joint work with Tim Driebergen, Merel Schalkers, Kelvin Loh, and Richard Versluis

Outlook

- Basic concepts of quantum computing
- Single- and multi-qubit states, gates, and simple algorithms
- Quantum-accelerated scientific computing
- NISQ devices, programming models, and potential algorithms
- LibKet
- Design principles and ongoing applications development
- Conclusion

Basic concepts of quantum computing

QUANTUM BITS AND GATES

Schrödinger's cat

Schrödinger's cat, cont'd

- Before opening the box: superposition of two states

$\left.\frac{1}{\sqrt{2}}|\vec{m}\rangle+\frac{1}{\sqrt{2}} \right\rvert\, \Rightarrow$

- After opening the box: collapse to a single state

- Further examples of two-state quantum-mechanical system
- spin of an electron (up, down)
- polarization of a photon (vertical, horizontal)

Quantum bits

- Qubit: basic unit of quantum information (quantum version of a bit)

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle, \quad \alpha, \beta \in \mathbb{C}, \quad|\alpha|^{2}+|\beta|^{2}=1
$$

- Computational basis

$$
\mathcal{E}=(|0\rangle,|1\rangle)=\left(\binom{1}{0},\binom{0}{1}\right)
$$

- Coefficients α, β are the probability amplitues and $|\alpha|^{2}$ and $|\beta|^{2}$ are the probabilities of measuring the basis states $|0\rangle$ and $|1\rangle$, respectively

Single-qubit states

- Bloch sphere
$|\psi\rangle=\left\langle\hat{\chi}\left(\cos \frac{\theta}{2}|0\rangle+e^{i \varphi} \sin \frac{\theta}{2}|1\rangle\right)\right.$
- polar angle $\theta \in[0, \pi]$
- azimutal angle $\varphi \in[0,2 \pi)$
- global phase δ

Classical gates

- NOT

- NAND

A	B	out
0	0	1
0	1	1
1	0	1
1	1	0

- Logical operations based on truth tables
- Most classical gates are not reversible

Quantum gates

- Pauli X

- Hadamard

- Unitary operations represented by unitary matrices
- All quantum gates are reversible, e.g. $H H^{\dagger}=I$
- Universal gate set $\{H, S, T, C N O T\}$

Single-qubit gates

Single-qubit gates

Single-qubit circuits

- Single-qubit gates \widehat{U}_{k} are unitary matrices, i.e.

$$
\widehat{U}_{k} \widehat{U}_{k}^{\dagger}=\widehat{U}_{k}^{\dagger} \widehat{U}_{k}=\hat{I}
$$

- Quantum circuits are sequences of matrix-vector multiplications

$$
\left|\psi_{\text {out }}\right\rangle=\widehat{U}_{3} \widehat{U}_{2} \widehat{U}_{1}\left|\psi_{\text {in }}\right\rangle
$$

Multi-qubit states

- $\left|\psi_{0}\right\rangle=\alpha_{0}|0\rangle+\beta_{0}|1\rangle=\alpha_{0}\binom{1}{0}+\beta_{0}\binom{0}{1}$

Tensor product

- $\left|\psi_{1}\right\rangle=\alpha_{1}|0\rangle+\beta_{1}|1\rangle=\alpha_{1}\binom{1}{0}+\beta_{1}\binom{0}{1}$

$$
|A\rangle \otimes|B\rangle=\left[\begin{array}{ll}
a_{11} B & a_{12} B \\
a_{21} B & a_{22} B
\end{array}\right]
$$

- Tensor product of two single-qubit states

$$
\left|\psi_{0}\right\rangle \otimes\left|\psi_{1}\right\rangle=\alpha_{0} \alpha_{1}|00\rangle+\alpha_{0} \beta_{1}|01\rangle+\beta_{0} \alpha_{1}|10\rangle+\beta_{0} \beta_{1}|11\rangle=:\left|\psi_{0} \psi_{1}\right\rangle
$$

with

$$
\begin{gathered}
\left|\alpha_{0} \alpha_{1}\right|^{2}+\left|\alpha_{0} \beta_{1}\right|^{2}+\left|\beta_{0} \alpha_{1}\right|^{2}+\left|\beta_{0} \beta_{1}\right|^{2}= \\
\left|\alpha_{0}\right|^{2}\left(\left|\alpha_{1}\right|^{2}+\left|\beta_{1}\right|^{2}\right)+\left|\alpha_{1}\right|^{2}\left(\left|\alpha_{1}\right|^{2}+\left|\beta_{1}\right|^{2}\right)=1
\end{gathered}
$$

Multi-qubit states, cont'd

- Tensor product of n single-qubit states

$$
\left|\psi_{0} \ldots \psi_{n}\right\rangle=\gamma_{0 \ldots 00}|0 \ldots 00\rangle+\gamma_{0 \ldots 01}|0 \ldots 01\rangle+\cdots+\gamma_{1 \ldots 11}|1 \ldots 11\rangle
$$

- An n-qubit register can hold the 2^{n} inputs 'simultaneously' in superposition
- A word of caution: it is impossible to obtain the γ 's; one obtains a single binary answer, say, $|001101\rangle$ with probability $\left|\gamma_{001101}\right|^{2}$ upon measuring
- A single run of a quantum circuit is not very useful; many runs are required to measure the correct answer to the problem with sufficient certainty

Example: 3-bit password

Multi-qubit gates

$$
H \otimes I|00\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right)=\frac{|00\rangle+|10\rangle}{\sqrt{2}}=\frac{(|0\rangle+|1\rangle) \otimes|0\rangle}{\sqrt{2}}
$$

Basic concepts of quantum computing

SIMPLE QUANTUM ALGORITHMS

Bell state

$$
\operatorname{CNOT}(H \otimes I)|00\rangle=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right)=\frac{|00\rangle+|11\rangle}{\sqrt{2}}
$$

- The Bell state is maximally entangled. By measuring one of the two qubits one knows the value of the other qubit without a further measurement

Quantum teleportation

How difficult can it be to add two integers?

Classical integer adder

A first quantum integer adder

Carry Gate

n extra ancilla qubits needed $:$:

Another quantum integer adder

Towards a practical quantum integer adder

1000 QX simulator runs with depolarizing noise error model

	0,1		$10^{-\frac{3}{2}}$		0,01		$10^{-\frac{5}{2}}$	
1	0.27045	0.3793	0.50545	0.2752	0.78965	0.1233	0.92285	0.0463
ヘ 2	0.134061	0.221523	0.165182	0.209176	0.451353	0.134284	0.762621	0.0570876
ㄷ	0.0601436	0.112097	0.0683512	0.116162	0.191802	0.105916	0.540766	0.0754021
+ 4	0.0336509	0.0611537	0.0351125	0.0589036	0.064375	0.0645881	0.306778	0.0802711
ᄃ 5					0.0224336	0.031892	0.154869	0.0575671
- 6					0.00798384	0.0176539	0.0654961	0.033179
7					0.00398747	0.0076473	0.0252142	0.0167067
8					0.00254026	0.00363275	0.00834128	0.00823629

Standard circuit: prob. correct (left), largest prob. wrong answer (right)

Towards a practical quantum integer adder

1000 QX simulator runs with depolarizing noise error model

	0,1		$10^{-\frac{3}{2}}$		0,01		$10^{-\frac{5}{2}}$	
1	0.29475	0.3695	0.54555	0.27185	0.8158	0.11735	0.93645	0.04195
ヘ 2	0.110416	0.230068	0.239152	0.203304	0.569495	0.115691	0.837026	0.0445888
ᄃ 3	0.0581316	0.114572	0.096711	0.122477	0.341537	0.102147	0.697436	0.0509187
+ 4	0.0259028	0.0583002	0.0382769	0.0672328	0.183066	0.0726129	0.543162	0.0579935
ᄃ 5					0.0839273	0.0450361	0.407117	0.0574072
守 6					0.0412412	0.0270095	0.283642	0.049151
7					0.0177059	0.0131818	0.191996	0.0404665
8					0.00647699	0.00675828	0.116269	0.0290022

Optimized circuit: prob. correct (left), largest prob. wrong answer (right)

Quantum-accelerated scientific computing
NISQ DEVICES, PROGRAMMING MODELS, AND ALGORITHMS

NISQ era

- Noisy Intermediate-Scale Quantum technology arXiv:1801.00862, 2018

John Preskill

- Noisy emphasizes that we'll have imperfect control over qubits
- application of $R_{\phi}=\left(\begin{array}{cc}1 & 0 \\ 0 & e^{i \phi}\end{array}\right)$ is inaccurate, i.e. $R_{\phi \pm \epsilon}$
- quantum state decoheres, i.e. $|\alpha|^{2}+|\beta|^{2} \neq 1$
- Intermediate-Scale refers to the size of the current and near-future quantum computers which will have between 50 to a few hundred qubits

Quantum processors

Manufacturer	\#qubits
IBM	$5-53$
Rigetti	$8-32$
Intel	$17-49$
Google	$20-72$

IBM Q16 Melbourne

Rigetti's Aspen-7-28Q-A

Quantum software platforms

LaRose: Overview and Comparison of Gate Level Quantum Software Platforms, arXiv:1807.02500, 2018

Q-programming model - today

Q-accelerated programming model - our vision

Q-accelerated programming model - our vision

Quantum algorithms with potential use in SciComp

- Quantum linear solvers
- HHL-type 'solver' algorithms: $x^{\dagger} M x$ such that $A x=b$
- sparse matrices [Harrow, Hassidim, Lloyd 2009] $O\left(\log (N) \kappa^{2} / \epsilon\right)$
- dense matrices [Wossnig et al. 2018]
- Hybrid Variational QC Algorithms (HVQCA)
- sparse matrices [Bravo-Prieto et al. 2019 \& Xu et al. 2019] linear scaling in κ and super-linear scaling in \#qubits

Quantum algorithms with potential use in SciComp, cont'd

- Quantum algorithms for ...
- linear differential equations [Berry 2010, Xin et al. 2018]
- nonlinear differential equations [Leyton, Osborne 2008]
- Poisson equation [Cao et al. 2013]
- principal component analysis [Lloyd et al. 2014]
- data fitting [Wiebe et al. 2012]
- machine learning [Lloyd et al. 2013, Adcock et al. 2015, Biamonte et al. 2017, Schuld et al. 2018, Perdomo-Ortiz et al. 2018, ...]

LibKet: The Kwantum expression template LIBrary

DESIGN PRINCIPLES

Kwantum expression template LIBrary

Kwantum expression template LIBrary

Expression templates

- C++ metaprogramming technique to create lightweight expressions whose evaluation is delayed until their values are really needed

Vector $x(n), y(n)$;

Expression templates

- C++ metaprogramming technique to create lightweight expressions whose evaluation is delayed until their values are really needed

Vector $x(n), y(n)$;
auto e0 = x + y;

Expression templates

- C++ metaprogramming technique to create lightweight expressions whose evaluation is delayed until their values are really needed

```
Vector x(n), y(n);
auto e0 = x + y;
auto e1 = 2*e0 + 1;
```


Expression templates

- C++ metaprogramming technique to create lightweight expressions whose evaluation is delayed until their values are really needed

```
Vector x(n), y(n);
auto e0 = x + y;
auto e1 = 2*e0 + 1;
auto e2 = sin(e1);
```


Expression templates

- C++ metaprogramming technique to create lightweight expressions whose evaluation is delayed until their values are really needed

Vector $x(n), y(n)$;
auto e0 = x + y;
auto e1 = 2*e0 + 1;
auto e2 = sin(e1);
Vector $z=e 2 ;$
-> $z[i]=\sin (2 *(x[i]+y[i])+1) ;$

Filters - views on the global Q-memory

- Starting from the full Q-memory filters restrict qubits step by step

$$
\text { auto } f 0=\text { select }\langle 0,2,3\rangle() ;
$$

Q-Device
$q_{0} \quad q_{1} \quad q_{2} \quad q_{3} \quad q_{4}$

Filters - views on the global Q-memory

- Starting from the full Q-memory filters restrict qubits step by step

```
auto f0 = select<0,2,3>();
auto f1 = range<1,2>(f0);
```

Q-Device

Filters - views on the global Q-memory

- Starting from the full Q-memory filters restrict qubits step by step

```
auto f0 = select<0,2,3>();
auto f1 = range<1,2>(f0);
auto f2 = tag<0>(f1);
```

Q-Device

Filters - views on the global Q-memory

- Starting from the full Q-memory filters restrict qubits step by step

```
auto f0 = select<0,2,3>();
```

auto f0 = select<0,2,3>();
auto f1 = range<1,2>(f0);
auto f1 = range<1,2>(f0);
auto f2 = tag<0>(f1);
auto f2 = tag<0>(f1);
auto f3 = qubit<1>(f2);

```
auto f3 = qubit<1>(f2);
```


Q-Device

Filters - views on the global Q-memory

- Starting from the full Q-memory filters restrict qubits step by step

```
auto f0 = select<0,2,3>();
auto f1 = range<1,2>(f0);
auto f2 = tag<0>(f1);
auto f3 = qubit<1>(f2);
auto f4 = tag<1>(f3);
```


Q-Device

Filters - views on the global Q-memory

- Starting from the full Q-memory filters restrict qubits step by step

```
```

auto f0 = select<0,2,3>();

```
```

auto f0 = select<0,2,3>();
auto f1 = range<1,2>(f0);
auto f1 = range<1,2>(f0);
auto f2 = tag<0>(f1);
auto f2 = tag<0>(f1);
auto f3 = qubit<1>(f2);
auto f3 = qubit<1>(f2);
auto f4 = tag<1>(f3);
auto f4 = tag<1>(f3);
auto f5 = gototag<0>(f4);

```
```

auto f5 = gototag<0>(f4);

```
```

Q-Device

Filters - views on the global Q-memory

- Starting from the full Q-memory filters restrict qubits step by step

```
auto f0 = select<0,2,3>();
auto f1 = range<1,2>(f0);
auto f2 = tag<0>(f1);
auto f3 = qubit<1>(f2);
auto f4 = tag<1>(f3);
auto f5 = gototag<0>(f4);
auto f6 = gototag<1>(f5);
```


Q-Device

Gates - the salt of in-memory computing

- Gates apply to all qubits of the current filter chain (SIMD-ish)

```
auto e0 = init();
```

```
    q
```

q_{2}

Gates - the salt of in-memory computing

- Gates apply to all qubits of the current filter chain (SIMD-ish)

```
auto e0 = init();
auto e1 = sel<0,2>(e0);
```


Gates - the salt of in-memory computing

- Gates apply to all qubits of the current filter chain (SIMD-ish)

```
```

auto e0 = init();

```
```

auto e0 = init();
auto e1 = sel<0,2>(e0);
auto e1 = sel<0,2>(e0);
auto e2 = h(e1);

```
```

auto e2 = h(e1);

```
```


Gates - the salt of in-memory computing

- Gates apply to all qubits of the current filter chain (SIMD-ish)

```
```

auto e0 = init();

```
```

auto e0 = init();
auto e1 = sel<0,2>(e0);
auto e1 = sel<0,2>(e0);
auto e2 = h(e1);
auto e2 = h(e1);
auto e3 = all(e2);

```
```

auto e3 = all(e2);

```
```


Gates - the salt of in-memory computing

- Gates apply to all qubits of the current filter chain (SIMD-ish)

```
auto e0 = init();
auto e1 = sel<0,2>(e0);
auto e2 = h(e1);
auto e3 = all(e2);
auto e4 = cnot(
    sel<0,2>(),
    sel<1,4>(e3)
        );
```


Gates - the salt of in-memory computing

- Gates apply to all qubits of the current filter chain (SIMD-ish)

```
auto e0 = init();
auto e1 = sel<0,2>(e0);
auto e2 = h(e1);
auto e3 = all(e2);
auto e4 = cnot(
    sel<0,2>(),
    sel<1,4>(e3)
    );
```

auto e5 = measure(all(e4));

Circuits - pre-cooked quantum building blocks

- Generic quantum algorithms that can be applied to registers of arbitrary size
auto expr = qft(...);

Rule-based optimization

- Unitarity of quantum gates

$$
S \circ S^{\dagger}=S^{\dagger} \circ S=\text { id } \quad \text { auto expr }=s(\operatorname{sdag}(\ldots)) ;
$$

- Template metaprogramming

```
template<class Expr>
auto s(Expr&& expr)
{
    return QGate_S(expr);
}
```


Rule-based optimization

- Unitarity of quantum gates

$$
S \circ S^{\dagger}=S^{\dagger} \circ S=i d \quad \text { auto expr }=\ldots
$$

- Template metaprogramming

```
template<class Expr>
auto s(Expr&& expr)
{
    return QGate_S(expr);
}
```

- Explicit template specialization
template<>
auto s(QGate_Sdag\&\& expr) \{ return expr.getSubexpr();

Compile-time loops

- For-loop call

```
auto expr =
static_for<1,5,2,body>(...);
```


- For-loop body

struct body

```
{
```

 template<size_t k,
 class Expr>
 static constexpr auto
 func(Expr\&\& expr) noexcept
 \{
 return crk<k>(
 sel<k-1>(all()),
 sel<k >(all(expr)));
 \}
 \};

Advanced techniques

- Hook gate for user-defined mini-circuits
- Just-in-time compilation of run-time generated quantum expressions

Work in progress

- Decomposition gates, e.g. $U=R_{z}\left(\varphi_{1}\right) R_{y}\left(\varphi_{2}\right) R_{z}\left(\varphi_{3}\right)$
- Qinteger and QPosit arithmetics
- C and Python API using JIT compilation

FPGA-ish ‘synthesis’

- Generic quantum expression

```
auto expr = qft(init());
```

is independent of

- Q-device type
- Q-memory size (\#qubits)
- concrete input data

FPGA-ish 'synthesis’

- Generic quantum expression auto expr = qft(init()); is independent of
- Q-device type
- Q-memory size (\#qubits)
- concrete input data
- Q-device specific kernel code QData<6, cQASMv1> data; cout << expr(data);

```
version 1.0
qubits 6
h q[0]
cr q[1], q[0], 1.570796326794896558
cr q[2], q[0], 0.785398163397448279
cr q[3], q[0], 0.392699081698724139
cr q[4], q[0], 0.196349540849362070
cr q[5], q[0], 0.098174770424681035
h q[1]
cr q[2], q[1], 1.570796326794896558
cr q[3], q[1], 0.785398163397448279
cr q[4], q[1], 0.392699081698724139
cr q[5], q[1], 0.196349540849362070
h q[2]
cr q[3], q[2], 1.570796326794896558
cr q[4], q[2], 0.785398163397448279
cr q[5], q[2], 0.392699081698724139
h q[3]
cr q[4], q[3], 1.570796326794896558
cr q[5], q[3], 0.785398163397448279
h q[4]
cr q[5], q[4], 1.570796326794896558
h q[5]
swap q[0], q[5]
swap q[1], q[4]
swap q[2], q[3]
```

Quantum-Inspire

FPGA-ish ‘synthesis’

- Generic quantum expression auto expr = qft(init()); is independent of
- Q-device type
- Q-memory size (\#qubits)
- concrete input data
- Q-device specific kernel code QData<6, openQASMv2> data; cout << expr(data);

version 1.0

qubits 6
h q[0]
cr q[1], q[0], 1.570796326794896558
cr $\mathrm{q}[2], \mathrm{q}[0], 0.785398163397448279$
cr q[3], q[0], 0.392699081698724139
cr $q[4], q[0], 0.196349540849362070$ cr q[5], q[0], 0.098174770424681035 h q[1]
cr $q[2], q[1], 1.570796326794896558$
cr q[3], q[1], 0.785398163397448279 cr q[4], q[1], 0.392699081698724139 cr q[5], q[1], 0.196349540849362070 h q[2]
cr q[3], q[2], 1.570796326794896558
cr q[4], q[2], 0.785398163397448279
cr q[5], q[2], 0.392699081698724139 h q[3]
cr q[4], q[3], 1.570796326794896558 cr q[5], q[3], 0.785398163397448279 h q[4]
cr q[5], q[4], 1.570796326794896558 h q[5]
swap $q[0]$, $q[5]$
swap $q[1], \mathrm{q}[4]$
swap q[2], q[3]

Quantum-Inspire

```
OPENQASM 2.0;
include "qelib1.inc";
qreg q[6];
creg c[6];
h q[0];
cu1(1.570796326794896558) q[1], q[0];
cu1(0.785398163397448279) q[2], q[0];
cu1(0.392699081698724139) q[3], q[0];
cu1(0.196349540849362070) q[4], q[0];
cu1(0.098174770424681035) q[5], q[0];
h q[1];
cu1(1.570796326794896558) q[2], q[1];
cu1(0.785398163397448279) q[3], q[1];
cu1(0.392699081698724139) q[4], q[1];
cu1(0.196349540849362070) q[5], q[1];
h q[2];
cu1(1.570796326794896558) q[3], q[2];
cu1(0.785398163397448279) q[4], q[2];
cu1(0.392699081698724139) q[5], q[2];
h q[3];
cu1(1.570796326794896558) q[4], q[3];
cu1(0.785398163397448279) q[5], q[3];
h q[4];
cu1(1.570796326794896558) q[5], q[4];
h q[5];
swap q[0], q[5];
swap q[1], q[4];
swap q[2], q[3];
```

IBM Q Experience

CUDA-ish stream execution model

- High latency is caused by
- Python-based vendor tools and complexity of the process
- remote access to cloud-based Q-devices with waiting queues
// Blocking execution
QJob* job = data.execute(...);
// Result as JSON object json result = job->get();

CUDA-ish stream execution model

- High latency is caused by
- Python-based vendor tools and complexity of the process
- remote access to cloud-based Q-devices with waiting queues
- Asynchronous execution
- hides latencies by continuing the classical program flow
// Non-blocking execution
QJob* job = data.execute_async (...);
// do other tasks
// Wait for completion job->wait();

CUDA-ish stream execution model

- High latency is caused by
- Python-based vendor tools and complexity of the process
- remote access to cloud-based Q-devices with waiting queues
- Asynchronous execution
- hides latencies by continuing the classical program flow
- enables concurrent execution of kernels via multiple streams

```
QStream stream0, stream1;
```

```
QJob* job0 =
    data0.execute_async(stream0,...);
```

QJob* job1 =
data1.execute_async(stream1,...);
// do other tasks
if (job0->query ()) \{ ... \}
if (job1->query()) \{ ... \}

LibKet: The Kwantum expression template LIBrary

ONGOING DEVELOPMENTS

Real-valued data

- IEEE-754 floating points require 32-64 qubits per datum \rightarrow impractical
- Encoding real-number in a single qubit \rightarrow tempting but not succeeded yet
- More (qu)bit efficient number formats \rightarrow Posits (Type III UNUMs)

Posits

Posit arithmetic

- Example:

Posit arithmetic on quantum computers

Posit arithmetic on quantum computers

Conclusion

- A cross-platform SDK for Q-accelerated scientific computing
- Rapid prototyping and testing of quantum expressions
- Seamless integration into (C-accelerated) applications
- Ongoing work
- Implementation of HHL and QInteger/QPosit arithmetics
- Cloud platform https://INGInious.ewi.tudelft.nl
- Publications
- MM, Schalkers: A cross-platform programming framework for quantumaccelerated scientific computing. Submitted to ICCS 2020
- Driebergen, MM: A novel quantum algorithm for adding real-valued numbers using posit arithmetic. Submitted to RC 2020

Extra Slides

Simulation-based design and analysis cycle

Academic model problem

4. Redesign

- Problem: Minimize the difference

$$
d_{h}=u_{h}-u_{h}^{*}
$$

between the solution u_{h} and a given profile u_{h}^{*} w.p.t.
3. Analysis

$$
\mathcal{C}\left(d_{h}, p\right)=d_{h}^{T} M d_{h}
$$

such that d_{h} solve

$$
A_{h} d_{h}=f_{h}-A_{h} u_{h}^{*}
$$

