IgANets: Physics-Informed Machine Learning Embedded Into Isogeometric Analysis

Matthias Möller

Department of Applied Mathematics Delft University of Technology, The Netherlands

> IACM – CFC 2023 25 – 28 April 2023, Cannes, France

Joint work with Deepesh Toshniwal, Frank van Ruiten (TUD), Casper van Leeuwen, Paul Melis (SURF), Jaewook Lee (TU Vienna)

FDM, FVM, FEM, BEM, IgA,

Common misconceptions

- "Method a is/is not as accurate as method b"
- "Method a is x-times faster/slower than method b"

FDM, FVM, FEM, BEM, IgA, ...

- m theta established engineering workflows
- no cost amortization over multiple runs, no real-time capability

Common misconceptions

- "Method a is/is not as accurate as method b"
- "Method a is x-times faster/slower than method b"

Better question to ask

• What are the specific strengths/weaknesses of the different approaches?

VS.

PINNs, DeepONets, FourierNets, ...

- fast evaluation (costly training!)
- 🖒 inclusion of (measurement) data
 - \mathbf{Q} lack of convergence theory
 - $\mathbf{\nabla}$ lack of general acceptance

FDM, FVM, FEM, BEM, IgA, ...

sound mathematical foundation
 established engineering workflows

and

PINNs, DeepONets, FourierNets, ...

fast evaluation (costly training!)

🖒 inclusion of (measurement) data

Common misconceptions

- "Method a is/is not as accurate as method b"
- "Method a is x-times faster/slower than method b"

Better questions to ask

- What are the specific strengths/weaknesses of the different approaches?
- How can we combine the strengths of both classes of methods?

FDM, FVM, FEM, BEM, IgA, ...

sound mathematical foundation
 established engineering workflows

and

PINNs, DeepONets, FourierNets, ...

fast evaluation (costly training!)

🖒 inclusion of (measurement) data

Common misconceptions

- "Method a is/is not as accurate as method b"
- "Method a is x-times faster/slower than method b"

Better questions to ask

- What are the specific strengths/weaknesses of the different approaches?
- How can we combine the strengths of both classes of methods?
- What is the envisaged purpose of the new approach?

Interactive Design-through-Analysis

Vision: fast interactive qualitative analysis and accurate quantitative analysis within the same computational framework with seamless switching between both approaches

Photo: Siemens - Simulation for Design Engineers

PINN (Raissi et al. 2018): learns the (initial-)boundary-value problem

easy to implement for 'any' PDE because AD magic does it for you
 combined un-/supervised learning
 poor extrapolation/generalization
 point-based approach requires re-evaluation of NN at every point
 rudimentary convergence theory

PINN (Raissi et al. 2018): learns the (initial-)boundary-value problem

easy to implement for 'any' PDE because AD magic does it for you
 combined un-/supervised learning
 poor extrapolation/generalization
 point-based approach requires re-evaluation of NN at every point
 rudimentary convergence theory

DeepONet (Lu et al. 2019): *learns the differential operator*
$$G_{\theta}(u)(y) = \sum_{k=1}^{q} \underbrace{b_k(u(x_1), u(x_2), \dots, u(x_m))}_{\text{branch}} \underbrace{t_k(y)}_{\text{trunk}}$$

PINN (Raissi et al. 2018): learns the (initial-)boundary-value problem

easy to implement for 'any' PDE because AD magic does it for you
 combined un-/supervised learning
 poor extrapolation/generalization
 point-based approach requires re-evaluation of NN at every point
 rudimentary convergence theory

DeepONet (Lu et al. 2019): *learns the differential operator*
$$G_{\theta}(u)(y) = \sum_{k=1}^{q} \underbrace{b_{k}(u(x_{1}), u(x_{2}), \dots, u(x_{m}))}_{\text{branch}} \underbrace{t_{k}(y)}_{\text{trunk}} \quad \text{Don't we know good bases?}$$

Al/ML community: Fourier series, orthogonal polynomials, problem-specific basis functions \rightarrow impractical for practical computer-aided geometric design

Al/ML community: Fourier series, orthogonal polynomials, problem-specific basis functions \rightarrow impractical for practical computer-aided geometric design

FEM community: plethora of finite element basis functions defined on the computational mesh \rightarrow impractical for a priori training of generic networks

Al/ML community: Fourier series, orthogonal polynomials, problem-specific basis functions \rightarrow impractical for practical computer-aided geometric design

FEM community: plethora of finite element basis functions defined on the computational mesh \rightarrow impractical for a priori training of generic networks

CAGD community: trimmed NURBS \rightarrow maybe, but we're not yet there

Al/ML community: Fourier series, orthogonal polynomials, problem-specific basis functions \rightarrow impractical for practical computer-aided geometric design

FEM community: plethora of finite element basis functions defined on the computational mesh \rightarrow impractical for a priori training of generic networks

CAGD community: trimmed NURBS \rightarrow maybe, but we're not yet there

IGA community: multi-patch tensor-product or locally adaptive B-splines \rightarrow Let's do it!

B-spline basis functions

B-spline basis functions

Many good properties: compact support $[\xi_i, \xi_{i+p+1})$, positive function values over support interval, derivatives of B-splines are combinations of lower-order B-splines, ...

Paradigm: represent 'everything' in terms of tensor products of B-spline basis functions

Paradigm: represent 'everything' in terms of tensor products of B-spline basis functions

Many more good properties: partition of unity $\sum_{i=1}^{n} B_i(\xi, \eta) \equiv 1$, C^{p-1} continuity, ...

Geometry: bijective mapping from the unit square to the physical domain $\Omega_h \subset \mathbb{R}^d$

$$\mathbf{x}_h(\xi,\eta) = \sum_{i=1}^n B_i(\xi,\eta) \cdot \mathbf{x}_i \qquad \forall (\xi,\eta) \in [0,1]^2 =: \hat{\Omega}$$

• the shape of Ω_h is fully specified by the set of **control points** $\mathbf{x}_i \in \mathbb{R}^d$

Geometry: bijective mapping from the unit square to the physical domain $\Omega_h \subset \mathbb{R}^d$

$$\mathbf{x}_h(\xi,\eta) = \sum_{i=1}^n B_i(\xi,\eta) \cdot \mathbf{x}_i$$

$$\forall (\xi,\eta) \in [0,1]^2 =: \hat{\Omega}$$

- the shape of Ω_h is fully specified by the set of **control points** $\mathbf{x}_i \in \mathbb{R}^d$
- interior control points must be chosen such that 'grid lines' do not fold as this violates the bijectivity of $\mathbf{x}_h : \hat{\Omega} \to \Omega_h$

Geometry: bijective mapping from the unit square to the physical domain $\Omega_h \subset \mathbb{R}^d$

$$\mathbf{x}_h(\xi,\eta) = \sum_{i=1}^n B_i(\xi,\eta) \cdot \mathbf{x}_i$$

$$\forall (\xi,\eta) \in [0,1]^2 =: \hat{\Omega}$$

- the shape of Ω_h is fully specified by the set of **control points** $\mathbf{x}_i \in \mathbb{R}^d$
- interior control points must be chosen such that 'grid lines' do not fold as this violates the bijectivity of $\mathbf{x}_h : \hat{\Omega} \to \Omega_h$
- refinement in h (knot insertion) and p(order elevation) preserves the shape of Ω_h and can be used to generate finer computational 'grids' for the analysis

Model problem: Poisson's equation

$$-\Delta u_h = f_h \quad \text{in} \quad \Omega_h, \qquad u_h = g_h \quad \text{on} \quad \partial \Omega_h$$

with

(geometry)
$$\mathbf{x}_h(\xi,\eta) = \sum_{i=1}^n B_i(\xi,\eta) \cdot \mathbf{x}_i \quad \forall (\xi,\eta) \in [0,1]^2$$

(solution)
$$u_h \circ \mathbf{x}_h(\xi, \eta) = \sum_{i=1}^n B_i(\xi, \eta) \cdot \mathbf{u}_i \qquad \forall (\xi, \eta) \in [0, 1]^2$$

(r.h.s vector)
$$f_h \circ \mathbf{x}_h(\xi, \eta) = \sum_{i=1}^n B_i(\xi, \eta) \cdot \mathbf{f}_i \quad \forall (\xi, \eta) \in [0, 1]^2$$

boundary conditions)
$$g_h \circ \mathbf{x}_h(\xi, \eta) = \sum_{i=1}^n B_i(\xi, \eta) \cdot \underline{g_i} \quad \forall (\xi, \eta) \in \partial [0, 1]^2$$

(

Abstract representation

Given x_i (geometry), f_i (r.h.s. vector), and g_i (boundary conditions), compute

$$\begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} = A^{-1} \left(\begin{bmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_n \end{bmatrix}, \begin{bmatrix} g_1 \\ \vdots \\ g_n \end{bmatrix} \right) \cdot b \left(\begin{bmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_n \end{bmatrix}, \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix}, \begin{bmatrix} g_1 \\ \vdots \\ g_n \end{bmatrix} \right)$$

Any point of the solution can afterwards be obtained by a simple function evaluation

$$(\xi,\eta) \in [0,1]^2 \quad \mapsto \quad u_h \circ \mathbf{x}_h(\xi,\eta) = [B_1(\xi,\eta),\dots,B_n(\xi,\eta)] \cdot \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}$$

Abstract representation

Given x_i (geometry), f_i (r.h.s. vector), and g_i (boundary conditions), compute

$$\begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} = A^{-1} \left(\begin{bmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_n \end{bmatrix}, \begin{bmatrix} g_1 \\ \vdots \\ g_n \end{bmatrix} \right) \cdot b \left(\begin{bmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_n \end{bmatrix}, \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix}, \begin{bmatrix} g_1 \\ \vdots \\ g_n \end{bmatrix} \right)$$

Any point of the solution can afterwards be obtained by a simple function evaluation

$$(\xi,\eta) \in [0,1]^2 \quad \mapsto \quad u_h \circ \mathbf{x}_h(\xi,\eta) = [B_1(\xi,\eta),\dots,B_n(\xi,\eta)] \cdot \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}$$

Let us interpret the sets of B-spline coefficients $\{\mathbf{x}_i\}$, $\{f_i\}$, and $\{g_i\}$ as an efficient encoding of our PDE problem that is fed into our IgA machinery as **input**.

The **output** of our IgA machinery are the B-spline coefficients $\{u_i\}$ of the solution.

Isogeometric Analysis + Physics-Informed Machine Learning

IgANet: replace computation

$$\begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} = A^{-1} \left(\begin{bmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_n \end{bmatrix}, \begin{bmatrix} g_1 \\ \vdots \\ g_n \end{bmatrix} \right) \cdot b \left(\begin{bmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_n \end{bmatrix}, \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix}, \begin{bmatrix} g_1 \\ \vdots \\ g_n \end{bmatrix} \right)$$

Isogeometric Analysis + Physics-Informed Machine Learning

IgANet: replace computation by physics-informed machine learning

$$\begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} = \mathsf{IgANet} \left(\begin{bmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_n \end{bmatrix}, \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix}, \begin{bmatrix} g_1 \\ \vdots \\ g_n \end{bmatrix}; (\boldsymbol{\xi}^{(k)}, \boldsymbol{\eta}^{(k)})_{k=1}^{N_{\mathsf{samples}}} \right)$$

Isogeometric Analysis + Physics-Informed Machine Learning

IgANet: replace computation by physics-informed machine learning

$$\begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} = \mathsf{IgANet} \left(\begin{bmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_n \end{bmatrix}, \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix}, \begin{bmatrix} g_1 \\ \vdots \\ g_n \end{bmatrix}; (\boldsymbol{\xi}^{(k)}, \boldsymbol{\eta}^{(k)})_{k=1}^{N_{\mathsf{samples}}} \right)$$

Compute the solution from the trained neural network as follows

$$u_h(\boldsymbol{\xi}, \boldsymbol{\eta}) = [B_1(\boldsymbol{\xi}, \boldsymbol{\eta}), \dots, B_n(\boldsymbol{\xi}, \boldsymbol{\eta})] \cdot \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}, \quad \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} = \mathsf{IgANet}\left(\begin{bmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_n \end{bmatrix}, \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix}, \begin{bmatrix} g_1 \\ \vdots \\ g_n \end{bmatrix}\right)$$

IgANet architecture

Loss function

Model problem: Poisson's equation with Dirichlet boundary conditions

$$\begin{aligned} \mathsf{loss}_{\mathrm{PDE}} &= \frac{\alpha}{N_{\Omega}} \sum_{k=1}^{N_{\Omega}} \left| \Delta \left[u_h \circ \mathbf{x}_h \left(\xi^{(k)}, \eta^{(k)} \right) \right] - f_h \circ \mathbf{x}_h \left(\xi^{(k)}, \eta^{(k)} \right) \right|^2 \\ \mathsf{loss}_{\mathrm{BDR}} &= \frac{\beta}{N_{\Gamma}} \sum_{k=1}^{N_{\Gamma}} \left| u_h \circ \mathbf{x}_h \left(\xi^{(k)}, \eta^{(k)} \right) - g_h \circ \mathbf{x}_h \left(\xi^{(k)}, \eta^{(k)} \right) \right|^2 \end{aligned}$$

Express derivatives with respect to physical space variables using the Jacobian J, the Hessian H and the matrix of squared first derivatives Q (Schillinger *et al.* 2013):

$$\begin{bmatrix} \frac{\partial^2 B}{\partial x^2} \\ \frac{\partial^2 B}{\partial x \partial y} \\ \frac{\partial^2 B}{\partial y^2} \end{bmatrix} = Q^{-\top} \left(\begin{bmatrix} \frac{\partial^2 B}{\partial \xi^2} \\ \frac{\partial^2 B}{\partial \xi \partial \eta} \\ \frac{\partial^2 B}{\partial \eta^2} \end{bmatrix} - H^{\top} J^{-\top} \begin{bmatrix} \frac{\partial B}{\partial \xi} \\ \frac{\partial B}{\partial \eta} \end{bmatrix} \right)$$

Two-level training strategy

For
$$[\mathbf{x}_1, \dots, \mathbf{x}_n] \in \mathcal{S}_{geo}$$
, $[f_1, \dots, f_n] \in \mathcal{S}_{rhs}$, $[g_1, \dots, g_n] \in \mathcal{S}_{bcond}$ do

For a batch of randomly sampled $(\xi_k,\eta_k)\in[0,1]^2$ (or the Greville abscissae) do

Train IgANet
$$\begin{pmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_n \end{bmatrix}, \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix}, \begin{bmatrix} g_1 \\ \vdots \\ g_n \end{bmatrix}; (\xi_k, \eta_k)_{k=1}^{N_{\mathsf{samples}}} \end{pmatrix} \mapsto \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}$$

EndFor

EndFor

Details:

- 7×7 bi-cubic tensor-product B-splines for \mathbf{x}_h and u_h , C^2 -continuous
- TensorFlow 2.6, 7-layer neural network with 50 neurons per layer and ReLU activation function (except for output layer), Adam optimizer, 30.000 epochs, training is stopped after 3.000 epochs w/o improvement of the loss value

Master thesis work by Frank van Ruiten, TU Delft

Test case: Poisson's equation on a variable annulus

Master thesis work by Frank van Ruiten, TU Delft

Master thesis work by Frank van Ruiten, TU Delft

Master thesis work by Frank van Ruiten, TU Delft

Master thesis work by Frank van Ruiten, TU Delft

Let's have a look under the hood

Computational costs of PINN vs. IgANets, implementation aspects, ...

Computational costs

Working principle of PINNs

$$\mathbf{x} \mapsto u(\mathbf{x}) := \mathsf{NN}(\mathbf{x}; f, g, G) = \sigma_L(\mathbf{W}_L \sigma(\dots(\sigma_1(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1))) + \mathbf{b}_L)$$

- use AD engine (automated chain rule) to compute derivatives, e.g., $u_x = \mathsf{NN}_x$
- use AD engine on top of AD tree (!!!) to compute gradients w.r.t. weights for training

Computational costs

Working principle of PINNs

$$\mathbf{x} \mapsto u(\mathbf{x}) := \mathsf{NN}(\mathbf{x}; f, g, G) = \sigma_L(\mathbf{W}_L \sigma(\dots(\sigma_1(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1))) + \mathbf{b}_L)$$

- use AD engine (automated chain rule) to compute derivatives, e.g., $u_x = \mathsf{NN}_x$
- use AD engine on top of AD tree (!!!) to compute gradients w.r.t. weights for training

Working principle of IgANets

$$[\mathbf{x}_i, f_i, g_i]_{i=1,\dots,n} \mapsto [u_i]_{i=1,\dots,n} := \mathsf{NN}(\mathbf{x}_i, f_i, g_i, i=1,\dots,n)$$

- use mathematics to compute derivatives, e.g., $\nabla_{\mathbf{x}} u = (\sum_{i=1}^{n} \nabla_{\boldsymbol{\xi}} B_i(\boldsymbol{\xi}) u_i) J_G^{-t}$
- use AD to compute gradients w.r.t. weights for training, i.e. (illustrated in 1D)

$$\frac{\partial(\mathbf{d}_{\xi}^{r}u(\xi))}{\partial w_{k}} = \sum_{i=1}^{n} \frac{\partial(\mathbf{d}_{\xi}^{r}b_{i}^{p}u_{i})}{\partial w_{k}} = \sum_{i=1}^{n} \mathbf{d}_{\xi}^{r+1} b_{i}^{p} \frac{\partial \xi}{\partial w_{k}} u_{i} + \sum_{i=1}^{n} \mathbf{d}_{\xi}^{r}b_{i}^{p} \frac{\partial u_{i}}{\partial w_{k}}$$

Towards an ML-friendly B-spline evaluation

Major computational task (illustrated in 1D)

Given sampling point $\xi \in [\xi_i,\xi_{i+1})$ compute for $r \geq 0$

$$\mathbf{d}_{\xi}^{r}u(\xi) = \left[\mathbf{d}_{\xi}^{r}b_{i-p}^{p}(\xi), \dots, \mathbf{d}_{\xi}^{r}b_{i}^{p}(\xi)\right] \cdot \left[u_{i-p}, \dots, u_{i}\right]$$

network's output

Textbook derivatives

$$\mathbf{d}_{\xi}^{r} b_{i}^{p}(\xi) = (p-1) \left(\frac{-\mathbf{d}_{\xi}^{r-1} b_{i+1}^{p-1}(\xi)}{\xi_{i+p} - \xi_{i+1}} + \frac{\mathbf{d}_{\xi}^{r-1} b_{i}^{p-1}(\xi)}{\xi_{i+p-1} - \xi_{i}} \right)$$

with

$$b_i^p(\xi) = \frac{\xi - \xi_i}{\xi_{i+p} - \xi_i} b_i^{p-1}(\xi) + \frac{\xi_{i+p+1} - \xi}{\xi_{i+p+1} - \xi_{i+1}} b_{i+1}^{p-1}(\xi), \quad b_i^0(\xi) = \begin{cases} 1 & \text{if } \xi_i \le \xi < \xi_{i+1} \\ 0 & \text{otherwise} \end{cases}$$

Towards an ML-friendly B-spline evaluation

Matrix representation of B-splines (Lyche and Morken 2011)

$$\left[\mathbf{d}_{\boldsymbol{\xi}}^{r} \boldsymbol{b}_{i-p}^{p}(\boldsymbol{\xi}), \dots, \mathbf{d}_{\boldsymbol{\xi}}^{r} \boldsymbol{b}_{i}^{p}(\boldsymbol{\xi})\right] = \frac{p!}{(p-r)!} R_{1}(\boldsymbol{\xi}) \cdots R_{p-r}(\boldsymbol{\xi}) \mathbf{d}_{\boldsymbol{\xi}} R_{p-r+1} \cdots \mathbf{d}_{\boldsymbol{\xi}} R_{p}$$

with $k \times k + 1$ matrices $R_k(\xi)$, e.g.

$$R_{1}(\xi) = \begin{bmatrix} \frac{\xi_{i+1}-\xi}{\xi_{i+1}-\xi_{i}} & \frac{\xi-\xi_{i}}{\xi_{i+1}-\xi_{i}} \end{bmatrix}$$

$$R_{2}(\xi) = \begin{bmatrix} \frac{\xi_{i+1}-\xi}{\xi_{i+1}-\xi_{i-1}} & \frac{\xi-\xi_{i-1}}{\xi_{i+1}-\xi_{i-1}} & 0\\ 0 & \frac{\xi_{i+2}-\xi}{\xi_{i+2}-\xi_{i}} & \frac{\xi-\xi_{i}}{\xi_{i+2}-\xi_{i}} \end{bmatrix}$$

$$R_{3}(\xi) = \dots$$

An ML-friendly B-spline evaluation

Algorithm 2.22 from (Lyche and Morken 2011)

1 b = 1 For k = 1, ..., p - r $\mathbf{t}_1 = (\xi_{i-k+1}, \dots, \xi_i)$ $\mathbf{t}_2 = (\xi_{i+1}, \dots, \xi_{i+k})$ $\mathbf{w} = (\xi - \mathbf{t}_1) \div (\mathbf{t}_2 - \mathbf{t}_1)$ $\mathbf{b} = [(1 - \mathbf{w}) \odot \mathbf{b}, 0] + [0, \mathbf{w} \odot \mathbf{b}]$ For $k = p - r + 1, \dots, p$ $\mathbf{t}_1 = (\xi_{i-k+1}, \dots, \xi_i)$ $\mathbf{t}_2 = (\xi_{i+1}, \dots, \xi_{i+k})$ $\mathbf{w} = 1 \div (\mathbf{t}_2 - \mathbf{t}_1)$ $\mathbf{b} = [-\mathbf{w} \odot \mathbf{b}, 0] + [0, \mathbf{w} \odot \mathbf{b}]$

where \div and \odot denote the element-wise division and multiplication of vectors, respectively.

An ML-friendly B-spline evaluation

Algorithm 2.22 from (Lyche and Morken 2011) with slight modifications

1
$$\mathbf{b} = 1$$

2 For $k = 1, ..., p - r$
1 $\mathbf{t}_1 = (\xi_{i-k+1}, ..., \xi_i)$
2 $\mathbf{t}_{21} = (\xi_{i+1}, ..., \xi_{i+k}) - \mathbf{t}_1$
3 mask = $(\mathbf{t}_{21} < \mathbf{tol})$
4 $\mathbf{w} = (\xi - \mathbf{t}_1 - \mathbf{mask}) \div (\mathbf{t}_{21} - \mathbf{mask})$
5 $\mathbf{b} = [(1 - \mathbf{w}) \odot \mathbf{b}, 0] + [0, \mathbf{w} \odot \mathbf{b}]$
3 For $k = p - r + 1, ..., p$
1 $\mathbf{t}_1 = (\xi_{i-k+1}, ..., \xi_i)$
2 $\mathbf{t}_{21} = (\xi_{i+1}, ..., \xi_{i+k}) - \mathbf{t}_1$
3 mask = $(\mathbf{t}_{21} < \mathbf{tol})$
4 $\mathbf{w} = (1 - \mathbf{mask}) \div (\mathbf{t}_{21} - \mathbf{mask})$
5 $\mathbf{b} = [-\mathbf{w} \odot \mathbf{b}, 0] + [0, \mathbf{w} \odot \mathbf{b}]$

where \div and \odot denote the element-wise division and multiplication of vectors, respectively.

Performance evaluation - bivariate B-splines

Performance evaluation - trivariate B-splines

Performance evaluation - bivariate B-splines

Performance evaluation - trivariate B-splines

Interactive Design-through-Analysis

Front-ends			
🖕 gustaf	Three.js modeler	???	
by TU Vienna	by SURF		
WebSockets protocol for interactive spline modeling and visualization			
Back-ends			
Σ Ø	IgA Net	???	

28 / 31

Conclusion and outlook

IgANets combine classical numerics with physics-informed machine learning and may finally enable **integrated and interactive design-through-analysis** workflows

WIP

- interactive DTA workflow (/w SURF)
- use of IgA and IgANets in concert
- transfer learning upon basis refinement

Short paper: Möller, Toshniwal, van Ruiten: *Physics-informed* machine learning embedded into isogeometric analysis, 2021.

What's next

- Journal paper and code release (including Python API) in preparation
- 2 CISM-ECCOMAS Summer School Scientific Machine Learning in Design Optimization

IgANets: Physics-Informed Machine Learning Embedded Into Isogeometric Analysis

Matthias Möller

Department of Applied Mathematics Delft University of Technology, The Netherlands

IACM – CFC 2023 25 – 28 April 2023, Cannes, France

Joint work with Deepesh Toshniwal, Frank van Ruiten (TUD), Casper van Leeuwen, Paul Melis (SURF), Jaewook Lee (TU Vienna)

Thank you very much!

