Physics-Informed Machine Learning Embedded Into Isogeometric Analysis

Matthias Möller, Deepesh Toshniwal, Frank van Ruiten

Numerical Analysis, Department of Applied Mathematics
Delft University of Technology, NL
Lorentz Center Workshop
"Computational Mathematics and Machine Learning"
$1^{\text {st }}$ November 2021

Life before PINNs

Simulation-based analysis of PDEs with numerical methods has a long tradition

- particle methods: PIC (1955), SPH (1977), DPD (1992), RKPM (1995), ...
- hybrid particle-mesh methods: MPM (1990s), ...
- mesh-based methods: FEM (1940s), FDM (1950s), FVM (1971), IGA (2005), ...

Left: wave-structure interaction, LS-DYNA; right: supersonic flow around a cow, Siemens FloEFD

Life before PINNs

Simulation-based analysis of PDEs with numerical methods has a long tradition

- particle methods: PIC (1955), SPH (1977), DPD (1992), RKPM (1995), ...
- hybrid particle-mesh methods: MPM (1990s), ...
- mesh-based methods: FEM (1940s), FDM (1950s), FVM (1971), IGA (2005), ...
- theoretical foundation: existence \& uniqueness, convergence,
- a priori/ a posteriori error estimates, practical error indicators
- strategies for adaptive $h p$-mesh refinement

Life before PINNs

Simulation-based analysis of PDEs with numerical methods has a long tradition

- particle methods: PIC (1955), SPH (1977), DPD (1992), RKPM (1995), ...
- hybrid particle-mesh methods: MPM (1990s), ...
- mesh-based methods: FEM (1940s), FDM (1950s), FVM (1971), IGA (2005), ...
- theoretical foundation: existence \& uniqueness, convergence, ...
- a priori/ a posteriori error estimates, practical error indicators
- strategies for adaptive $h p$-mesh refinement
- unified framework for computer-aided design and finite element analysis

Isogeometric Analysis

B-spline basis functions

$$
\begin{aligned}
b_{\ell}^{0}(\xi) & = \begin{cases}1 & \text { if } \xi_{\ell} \leq \xi<\xi_{\ell+1} \\
0 & \text { otherwise }\end{cases} \\
b_{\ell}^{p}(\xi) & =\frac{\xi-\xi_{\ell}}{\xi_{\ell+p}-\xi_{\ell}} b_{\ell}^{p-1}(\xi) \\
& +\frac{\xi_{\ell+p+1}-\xi}{\xi_{\ell+p+1}-\xi_{\ell+1}} b_{\ell+1}^{p-1}(\xi)
\end{aligned}
$$

T.J.R. Hughes, J.A.Cottrell, Y.Bazilevs: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. CMAME 194(39-41), 2005.

Isogeometric Analysis

B-spline basis functions

$$
\begin{aligned}
b_{\ell}^{0}(\xi) & = \begin{cases}1 & \text { if } \xi_{\ell} \leq \xi<\xi_{\ell+1} \\
0 & \text { otherwise }\end{cases} \\
b_{\ell}^{p}(\xi) & =\frac{\xi-\xi_{\ell}}{\xi_{\ell+p}-\xi_{\ell}} b_{\ell}^{p-1}(\xi) \\
& +\frac{\xi_{\ell+p+1}-\xi}{\xi_{\ell+p+1}-\xi_{\ell+1}} b_{\ell+1}^{p-1}(\xi)
\end{aligned}
$$

Many good properties: compact support $\left[\xi_{\ell}, \xi_{\ell+p+1}\right)$, positive function values over support interval, derivatives of B-splines are combinations of lower-order B-splines, ...
T.J.R. Hughes, J.A.Cottrell, Y.Bazilevs: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. CMAME 194(39-41), 2005.

Isogeometric Analysis

Paradigm: represent 'everything' in terms of tensor products of B-spline basis functions

$$
B_{i}(\xi, \eta):=b_{\ell}^{p}(\xi) \cdot b_{k}^{q}(\eta), \quad i:=(k-1) \cdot n_{\ell}+\ell, \quad 1 \leq \ell \leq n_{\ell}, \quad 1 \leq k \leq n_{k},
$$

Isogeometric Analysis

Paradigm: represent 'everything' in terms of tensor products of B-spline basis functions

$$
B_{i}(\xi, \eta):=b_{\ell}^{p}(\xi) \cdot b_{k}^{q}(\eta), \quad i:=(k-1) \cdot n_{\ell}+\ell, \quad 1 \leq \ell \leq n_{\ell}, \quad 1 \leq k \leq n_{k},
$$

Many more good properties: partition of unity $\sum_{i=1}^{n} B_{i}(\xi, \eta) \equiv 1, C^{p-1}$ continuity, \ldots

Isogeometric Analysis

Geometry: bijective mapping from the unit square to the physical domain $\Omega_{h} \subset \mathbb{R}^{d}$

$$
\mathbf{x}_{h}(\xi, \eta)=\sum_{i=1}^{n} B_{i}(\xi, \eta) \cdot \mathbf{x}_{i} \quad \forall(\xi, \eta) \in[0,1]^{2}=: \hat{\Omega}
$$

- the shape of Ω_{h} is fully specified by the set of control points $\mathbf{x}_{i} \in \mathbb{R}^{d}$

Isogeometric Analysis

Geometry: bijective mapping from the unit square to the physical domain $\Omega_{h} \subset \mathbb{R}^{d}$

$$
\mathbf{x}_{h}(\xi, \eta)=\sum_{i=1}^{n} B_{i}(\xi, \eta) \cdot \mathbf{x}_{i} \quad \forall(\xi, \eta) \in[0,1]^{2}=: \hat{\Omega}
$$

- the shape of Ω_{h} is fully specified by the set of control points $\mathbf{x}_{i} \in \mathbb{R}^{d}$
- interior control points must be chosen such that 'grid lines' do not fold as this violates the bijectivity of $\mathbf{x}_{h}: \hat{\Omega} \rightarrow \Omega_{h}$

Isogeometric Analysis

Geometry: bijective mapping from the unit square to the physical domain $\Omega_{h} \subset \mathbb{R}^{d}$

$$
\mathbf{x}_{h}(\xi, \eta)=\sum_{i=1}^{n} B_{i}(\xi, \eta) \cdot \mathbf{x}_{i} \quad \forall(\xi, \eta) \in[0,1]^{2}=: \hat{\Omega}
$$

- the shape of Ω_{h} is fully specified by the set of control points $\mathbf{x}_{i} \in \mathbb{R}^{d}$
- interior control points must be chosen such that 'grid lines' do not fold as this violates the bijectivity of $\mathrm{x}_{h}: \hat{\Omega} \rightarrow \Omega_{h}$
- refinement in h (knot insertion) and p (order elevation) preserves the shape of Ω_{h} and can be used to generate finer computational 'grids' for the analysis

Isogeometric Analysis

Data, boundary conditions, and solution: forward mappings from the unit square

$$
\begin{array}{rll}
\text { (r.h.s vector) } & f_{h} \circ \mathbf{x}_{h}(\xi, \eta)=\sum_{i=1}^{n} B_{i}(\xi, \eta) \cdot f_{i} & \forall(\xi, \eta) \in[0,1]^{2} \\
\text { (boundary conditions) } & g_{h} \circ \mathbf{x}_{h}(\xi, \eta)=\sum_{i=1}^{n} B_{i}(\xi, \eta) \cdot g_{i} & \forall(\xi, \eta) \in \partial[0,1]^{2} \\
\text { (solution) } & u_{h} \circ \mathbf{x}_{h}(\xi, \eta)=\sum_{i=1}^{n} B_{i}(\xi, \eta) \cdot u_{i} & \forall(\xi, \eta) \in[0,1]^{2}
\end{array}
$$

Isogeometric Analysis

Data, boundary conditions, and solution: forward mappings from the unit square

$$
\begin{array}{rll}
\text { (r.h.s vector) } & f_{h} \circ \mathbf{x}_{h}(\xi, \eta)=\sum_{i=1}^{n} B_{i}(\xi, \eta) \cdot f_{i} & \forall(\xi, \eta) \in[0,1]^{2} \\
\text { (boundary conditions) } & g_{h} \circ \mathbf{x}_{h}(\xi, \eta)=\sum_{i=1}^{n} B_{i}(\xi, \eta) \cdot g_{i} & \forall(\xi, \eta) \in \partial[0,1]^{2} \\
\text { (solution) } & u_{h} \circ \mathbf{x}_{h}(\xi, \eta)=\sum_{i=1}^{n} B_{i}(\xi, \eta) \cdot u_{i} & \forall(\xi, \eta) \in[0,1]^{2}
\end{array}
$$

Model problem: Poisson's equation

$$
-\Delta u_{h}=f_{h} \quad \text { in } \quad \Omega_{h}, \quad u_{h}=g_{h} \quad \text { on } \quad \partial \Omega_{h}
$$

Isogeometric Analysis

Different solution approaches

- Galerkin-type IGA (Hughes et al. 2005 and many more)
- Isogeometric collocation methods (Reali, Hughes, 2015)
- Variational collocation method (Gomez, De Lorenzis, 2016)

Isogeometric Analysis

Different solution approaches

- Galerkin-type IGA (Hughes et al. 2005 and many more)
- matrix assembly is computational expensive
\rightarrow weighted quadrature (Calabrò et al. 2016),
\rightarrow low-rank approximation (Mantzaflaris et al. 2019), ...
- condition number of system matrix is exponential in p
$\rightarrow h$-multigrid solvers (Hofreither 2016, Takacs et al. 2017, de la Riva 2018),
$\rightarrow p$-multigrid solver (Tielen et al. 2018/20),
\rightarrow preconditioners (da Veiga et al. 2012/13, Sangalli 2016, Tani 2017, Cho 2018/19), ...
- Isogeometric collocation methods (Reali, Hughes, 2015)
- Variational collocation method (Gomez, De Lorenzis, 2016)

Isogeometric Analysis

Different solution approaches

- Galerkin-type IGA (Hughes et al. 2005 and many more)
- Isogeometric collocation methods (Reali, Hughes, 2015)
- Variational collocation method (Gomez, De Lorenzis, 2016)
- choice of optimal collocation points is not trivial
- convergence theory not fully developed (Schillinger et al. 2013)

Isogeometric Analysis

Different solution approaches

- Galerkin-type IGA (Hughes et al. 2005 and many more)
- Isogeometric collocation methods (Reali, Hughes, 2015)
- Variational collocation method (Gomez, De Lorenzis, 2016)

Abstract representation

Given \mathbf{x}_{i} (geometry), f_{i} (r.h.s. vector), and g_{i} (boundary conditions), compute

$$
\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]=A^{-1}\left(\left[\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right]\right) \cdot b\left(\left[\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right],\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right],\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{n}
\end{array}\right]\right)
$$

Any point of the solution can afterwards be obtained by a simple function evaluation

$$
(\xi, \eta) \in[0,1]^{2} \quad \mapsto \quad u_{h} \circ \mathbf{x}_{h}(\xi, \eta)=\left[B_{1}(\xi, \eta), \ldots, B_{n}(\xi, \eta)\right]\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]
$$

Isogeometric Analysis

- multi-patch IGA for complex geometries
- paradigm can be extended to volumetric splines
- local adaptation using THB- (Gianelli et al. 2012), LR- (Dokken et al. 2014), T- (Sederberg et al. 2004), or U-splines (Scott 2018)
- IGA enables integrated but not (yet) interactive computer-aided design-and-analysis workflows

[^0]
Isogeometric Analysis

- multi-patch IGA for complex geometries
- paradigm can be extended to volumetric splines
- local adaptation using THB- (Gianelli et al. 2012), LR- (Dokken et al. 2014), T- (Sederberg et al. 2004), or U-splines (Scott 2018)
- IGA enables integrated but not (yet) interactive computer-aided design-and-analysis workflows

IGA-PINN paradigm: replace computation by physics-informed machine learning

$$
\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]=A^{-1}\left(\left[\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right]\right) \cdot b\left(\left[\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right],\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right],\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{n}
\end{array}\right]\right)
$$

Isogeometric Analysis

- multi-patch IGA for complex geometries
- paradigm can be extended to volumetric splines
- local adaptation using THB- (Gianelli et al. 2012), LR- (Dokken et al. 2014), T- (Sederberg et al. 2004), or U-splines (Scott 2018)
- IGA enables integrated but not (yet) interactive computer-aided design-and-analysis workflows

IGA-PINN paradigm: replace computation by physics-informed machine learning

$$
\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]=\text { PINN }\left(\left[\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right],\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right],\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{n}
\end{array}\right] ;\left(\xi_{k}, \eta_{k}\right)_{k=1}^{N_{\text {samples }}}\right)
$$

Isogeometric Analysis

- multi-patch IGA for complex geometries
- paradigm can be extended to volumetric splines
- local adaptation using THB- (Gianelli et al. 2012), LR- (Dokken et al. 2014), T- (Sederberg et al. 2004), or U-splines (Scott 2018)
- IGA enables integrated but not (yet) interactive computer-aided design-and-analysis workflows

IGA-PINN paradigm: replace computation by physics-informed machine learning

$$
u_{h}(\xi, \eta) \approx\left[B_{1}(\xi, \eta), \ldots, B_{n}(\xi, \eta)\right]\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]=\operatorname{PINN}\left(\left[\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right],\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right],\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{n}
\end{array}\right] ;(\xi, \eta)\right)
$$

IGA-PINN

Loss function

$$
\begin{aligned}
& \operatorname{loss}_{\mathrm{PDE}}=\frac{\alpha}{N_{\Omega}} \sum_{k=1}^{N_{\Omega}}\left|\Delta\left[u_{h} \circ \mathbf{x}_{h}\left(\xi_{k}, \eta_{k}\right)\right]-f_{h} \circ \mathbf{x}_{h}\left(\xi_{k}, \eta_{k}\right)\right|^{2} \\
& \operatorname{loss}_{\mathrm{BDR}}=\frac{\beta}{N_{\Gamma}} \sum_{k=1}^{N_{\Gamma}}\left|u_{h} \circ \mathbf{x}_{h}\left(\xi_{k}, \eta_{k}\right)-g_{h} \circ \mathbf{x}_{h}\left(\xi_{k}, \eta_{k}\right)\right|^{2}
\end{aligned}
$$

Express derivatives with respect to physical space variables using the Jacobian J, the Hessian H and the matrix of squared first derivatives Q (Schillinger et al. 2013):

Two-level training strategy

For $\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right] \in \mathcal{S}_{\text {geo }},\left[f_{1}, \ldots, f_{n}\right] \in \mathcal{S}_{\text {rhs }},\left[g_{1}, \ldots, g_{n}\right] \in \mathcal{S}_{\text {bcond }} \mathbf{d o}$
For a batch of randomly sampled $\left(\xi_{k}, \eta_{k}\right) \in[0,1]^{2}$ do

$$
\text { Train PINN }\left(\left[\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right],\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right],\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{n}
\end{array}\right] ;\left(\xi_{k}, \eta_{k}\right)_{k=1}^{N_{\text {samples }}}\right) \mapsto\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]
$$

EndFor

EndFor

IGA details: 7×7 bi-cubic tensor-product B-splines for \mathbf{x}_{h} and u_{h}, C^{2}-continuous
PINN details: TensorFlow 2.6, 7-layer neural network with 50 neurons per layer and ReLU activation function (except for output layer), Adam optimizer, 30.000 epochs, training is stopped after 3.000 epochs w/o improvement of the loss value

[^1]
Test case: Poisson's equation on a variable annulus

Ongoing master thesis work of Frank van Ruiten, TU Delft

Preliminary results

Ongoing master thesis work of Frank van Ruiten, TU Delft

Preliminary results

Ongoing master thesis work of Frank van Ruiten, TU Delft

Preliminary results

Ongoing master thesis work of Frank van Ruiten, TU Delft

Preliminary results

Ongoing master thesis work of Frank van Ruiten, TU Delft

Preliminary results

Ongoing master thesis work of Frank van Ruiten, TU Delft

Conclusion and outlook

IGA-PINNs combine the best of both worlds and may finally enable integrated and interactive computer-aided design-and-analysis workflows

Todo

- performance and hyper-parameter tuning
- extension to multi-patch topologies
- use of IGA and IGA-PINNs in concert
- transfer learning upon refinement of basis functions

Thank you for your attention!

[^0]: CSE-minor BSc project, TU Delft

[^1]: Ongoing master thesis work of Frank van Ruiten, TU Delft

