Using the 5000 qubit D-Wave quantum annealer for improved near-surface characterization

Assoc. Prof. Matthias Möller Dept. Applied Mathematics, EEMCS

Delphi Consortium Meeting, The Hague Thursday, June 2, 2022

What can quantum computing do for you today?

A first-of-its-kind application to residual statics estimation and other opportunities in geosciences

Assoc. Prof. Matthias Möller Dept. Applied Mathematics, EEMCS

Delphi Consortium Meeting, The Hague Thursday, June 2, 2022

About

- Simulation & optimization, HPC, quantum computing
- 6 PhDs, QAIMS lab +4PhDs, BSc/MSc student projects
- Past and ongoing collaborations

Quantum computing

Hype or reality ?

Quantum computing

Article

Quantum supremacy using a programmable superconducting processor

https://doi.org/10.1038/s41586-019-1666-5
Received: 22 July 2019
Accepted: 20 September 2019
Published online: 23 October 2019

Frank Arute¹, Kunal Arya¹, Ryan Babbush¹, Dave Bacon¹, Joseph C. Bardin¹², Rami Barends¹, Rupak Biswas³, Sergio Boixo¹, Fernando G. S. L. Brandao¹⁴, David A. Buell¹, Brian Burkett¹, Yu Chen¹, Zijun Chen¹, Ben Chiaro⁵, Roberto Collins¹, William Courtney¹, Andrew Dunsworth¹, Edward Farhi¹, Brooks Foxen¹⁵, Austin Fowler¹, Craig Gidney¹, Marissa Giustina¹, Rob Graff¹, Keith Guerin¹, Steve Habegger¹, Matthew P. Harrigan¹, Michael J. Hartmann¹⁵, Alan Ho¹, Markus Hoffmann¹, Trent Huang¹, Travis S. Humble², Sergei V. Isakov¹, Evan Jeffrey¹,

Hype or reality ?

By **Dashveenjit Kaur** | 20 July, 2021

- China is unveiling a super-advanced 66-qubit quantum supercomputer called "Zuchongzhi"
- The Chinese team claims that it has solved a problem in just
- n over an hour that would otherwise take the world's most
 - powerful classical supercomputer eight years to crack.

Quantum computing

Quantum-computing use cases per industry

1. Approximate timing for medium term is by the year 2025; for long term, by the year 2035. Experts consider these values at stake to be a snapshot in time. Fully developed quantum computing will lead to additional value within and shifts between industry verticals.

Source: Expert interviews; McKinsey analysis

Sources: <u>https://www.fz-juelich.de/ias/jsc/EN/Research/ModellingSimulation/QIP/QTRL/_node.html</u> Michielsen K., FZ Jülich: Quantum Annealing for Optimization and Classification | D-Wave Qubits 2021

Outline

• Quantum annealing 101

• Residual statics estimation using quantum annealing

• Outlook and opportunities for collaboration

Local versus global optima

Quantum tunneling

Outline

- Quantum annealing 101
- Residual statics estimation using quantum annealing
- Outlook and opportunities for collaboration

Stan v.d. Linde Matthias Möller

TUDelft

Niels Neumann

Frank Phillipson

Marcin Dukalski Diego Rovetta

Further information

• Talk and paper at

• Recordings on Youtube

M. Dukalski
June 7, 2022
10:10-10:30 AM

Refraction residual statics estimation (RRSE)

Source: Colombo, D., F. Miorelli, E. Sandoval Curiel, and D. Rovetta, pQC: A novel approach for robust automatic near-surface analysis in low-relief geology, The Leading Edge 35 (11), 952-960.

Stack-power maximization in a nutshell

(b)

2

2.5

Stack-power maximization in a nutshell

Stack-power maximization on a quantum annealer

Synthetics: 16 traces, 4 shifts – problem size 4¹⁶

Synthetics: 16 traces, 4 shifts – problem size 4¹⁶

Synthetics: 16 traces, 4 shifts – problem size 4¹⁶

SEAM Arid model – problem size 16¹⁰⁸

SEAM Arid model: inputs

SEAM Arid model: deterministic output

SEAM Arid model: hybrid quantum output

SEAM Arid model: hybrid quantum output

This is just the beginning ...

O'Malley (2018) An approach to quantumcomputational hydrologic inverse analysis. Sci. Rep. Greer and O'Malley (2020) An approach to seismic inversion with quantum annealing. SEG Conference

... with more to come in the next years

•

Using the 5000 qubit D-Wave quantum annealer for improved near-surface characterization

Assoc. Prof. Matthias Möller Dept. Applied Mathematics, EEMCS

Delphi Consortium Meeting, The Hague Thursday, June 2, 2022

Using the 5000 qubit D-Wave quantum annealer for improved near-surface characterization

NWO OTP consortium

- Geophysical applications
- Practical quantum algorithms

Thank you!

