Isogeometric Analysis The better alternative to FEM? **Delft Institute of Applied Mathematics**

Matthias Möller (m.moller@tudelft.nl) 23 March 2016

Aim of this lunch lecture

- Give a brief introduction to Isogeometric Analysis
- Outline advantages of IgA over the Finite Element Method
- Address practical transformation of a FEM into an IgA code

The Finite Element Method

Strong problem formulation

Find *u* such that

Lu = f in Ω , subject to BC's and IC's.

The Finite Element Method

Strong problem formulation

Find *u* such that

Lu = f in Ω , subject to BC's and IC's.

Variational formulation

Find $u \in V$ such that

$$\int_{\Omega} wLu \mathrm{d}\mathbf{x} = \int_{\Omega} wf \mathrm{d}\mathbf{x} \qquad \text{for all } w \in W$$

subject to BC's and IC's.

The Finite Element Method

Strong problem formulation

Find u such that

Lu = f in Ω , subject to BC's and IC's.

Discretised variational formulation

Find $u_h \in V_h \subset V$ such that

$$\int_{\Omega_{\mathbf{h}}} w_{\mathbf{h}} L u_{\mathbf{h}} \mathrm{d} \mathbf{x} = \int_{\Omega_{\mathbf{h}}} w_{\mathbf{h}} f \mathrm{d} \mathbf{x}$$

for all
$$w_h \in W_h \subset W$$

subject to BC's and IC's.

1 / 36

No, since the triangulation \mathcal{T}_h of the geometry Ω_h is in many cases of lower polynomial order (e.g., pw. linear) than the approximation of the solution u_h (e.g., pw. quadratic or higher)

No, since the triangulation \mathcal{T}_h of the geometry Ω_h is in many cases of lower polynomial order (e.g., pw. linear) than the approximation of the solution u_h (e.g., pw. quadratic or higher)

Theoretical problem

But we require computational meshes that represent the curved boundary with high accuracy to obtain optimal convergence

$$\|u-u_h\|=\mathcal{O}(h^{p+1})$$

Even worse, in many practical simulations the geometry is only given as surface triangulation S_h from which the volumetric triangulation T_h of the domain Ω_h needs to be constructed

Even worse, in many practical simulations the geometry is only given as surface triangulation \mathcal{S}_h from which the volumetric triangulation \mathcal{T}_h of the domain Ω_h needs to be constructed

Common problems with the FEM

- 1 How to accurately refine, coarsen and/or deform Ω_h without a **parametric description** of the true geometry Ω ?
- e How to generate high-quality curved computational meshes for high-order methods in complex geometries?
- 3 How to define normal vectors along element boundaries?
- How to construct finite element basis functions with C¹ continuity (or higher) across element boundaries?
 - · Would lead to globally continuous derivative field
 - Would solve many problems with Material Point Method

Example

Poisson's problem

Find *u* such that

$$-\Delta u = f \qquad \text{in } \Omega = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$$
$$u = 0 \qquad \text{on } \Gamma = \partial \Omega$$

Discretised variational formulation

Find $u_h \in V_h = \{u_h \in \mathcal{H}^1(\Omega_h) : u_h = 0 \text{ on } \Gamma\}$ such that

$$\int_{\Omega_{\rm h}} \nabla w_{\boldsymbol{h}} \cdot \nabla u_{\boldsymbol{h}} \mathrm{d} \mathbf{x} = \int_{\Omega_{\rm h}} w_{\boldsymbol{h}} f \mathrm{d} \mathbf{x} \qquad \text{for all } w_{\boldsymbol{h}} \in W_{\boldsymbol{h}} = V_{\boldsymbol{h}}$$

Example

The finite element solution with pw. linear boundary approximation and pw. quadratic basis functions looks like this

Example

The finite element solution with pw. linear boundary approximation and pw. quadratic basis functions looks like this

The mission

Isogeometric Analysis

Computational analysis framework that ensures h = h

- Make use of a parametric description of the geometry ($\Omega = \Omega_h$) throughout all computational steps (FE-analysis, refinement/ coarsening, shape deformation, multi-physics coupling, ...)
- Use the same mathematical tools (**B-splines** or NURBS or ...) to represent the geometry Ω_h and the FE-solution u_h

Polynomial spaces

Polynomial space

The space of polynomials of degree p over the interval [a, b] is

$$\Pi^p([a,b]) := \{q(x) \in \mathcal{C}^\infty([a,b]) : q(x) = \sum_{i=0}^p c_i x^i, c_i \in \mathbb{R}\}$$

Example: $\Pi^{2}([0,1])$

Canonical basis

$$\mathcal{B} = \{1, x, x^2\}$$

Polynomials

TUDelft

$$q(x) = c_0 + c_1 x + c_2 x^2$$

Spline space

Polynomial splines

Let $\mathcal{P} = \{a = x_1 < \cdots < x_{p+1} = b\}$ be a partition of the interval Ω_0 and $\mathcal{M} = \{1 \le m_i \le p+1\}$ a set of positive integers. The polynomial spline of degree p is defined as $s : \Omega_0 \mapsto \mathbb{R}$ if

$$s|_{[x_i,x_{i+1}]} \in \Pi^p([x_i,x_{i+1}]), \quad i = 1,...,k$$

 $rac{d^j}{dx^j} s_{i-1}(x_i) = rac{d^j}{dx^j} s_i(x_i), \quad egin{array}{c} i = 2,...,k, \ j = 0,...,p - m_j \end{array}$

Polynomial splines of degree p form the spline space $S(\Omega_0, p, \mathcal{M}, \mathcal{P})$.

Open knot vector

An open knot vector is a sequence of non-decreasing coordinates $\xi_i \in [a, b] \subset \mathbb{R}$ in the parameter space $\Omega_0 = [a, b]$

$$\Xi = (\underbrace{\xi_1 = \dots = \xi_{p+1}}_{p+1 \text{ times}}, \dots, \underbrace{\xi_i, \dots, \xi_i}_{m_i \text{ times}}, \dots, \underbrace{\xi_{n+1} = \dots = \xi_{n+p+1}}_{p+1 \text{ times}})$$

where

- p is the polynomial order of the B-splines
- *n* is the number of B-spline functions
- ξ_i is the i-th knot with knot index i
- *m_i* is the multiplicity of knot ξ_i

TUDelft

< □ ▶ < @ ▶ < 들 ▶ < 들 ▶ < = ∽ ♡ < ♡

.3 / 36

Linear basis functions corresponding to $\Xi = \{0,0,0,1,2,3,3,3\}$

Linear basis functions corresponding to $\Xi = \{0,0,0,1,2,3,3,3\}$

Linear basis functions corresponding to $\Xi = \{0,0,0,1,2,3,3,3\}$

Properties of B-spline basis functions

Compact support

supp
$$N_{i,p}(\xi) = [\xi_i, \xi_{i+p+1}), \quad i = 1, ..., n$$

- System matrices are sparse like in the standard FEM
- Support grows with the polynomial order so that system matrices have a slightly broader stencil due to the coupling of degrees of freedom over multiple element layers

Properties of B-spline basis functions

Compact support

supp
$$N_{i,p}(\xi) = [\xi_i, \xi_{i+p+1}), \quad i = 1, ..., n$$

Strict positiveness

$$N_{i,p}(\xi) > 0$$
 for $\xi \in (\xi_i, \xi_{i+p+1}), i = 1, \dots, n$

- Consistent mass matrix has no negative off-diagonal entries
- Lumped mass matrix is not singular (no zero diagonal entries)

Properties of B-spline basis functions

Compact support

supp
$$N_{i,p}(\xi) = [\xi_i, \xi_{i+p+1}), \quad i = 1, ..., n$$

Strict positiveness

$$N_{i,p}(\xi) > 0$$
 for $\xi \in (\xi_i, \xi_{i+p+1}), i = 1, \dots, n$

Partition of unity
$$\sum_{i=1}^{n} N_{i,p}(\xi) = 1$$
 for all $\xi \in [a, b]$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ▶ ▲□ ▶

Parametric geometry description

Parametric geometry description

Spline surface

$$S(\xi,\eta) = \sum_{i=1}^{n} \sum_{j=1}^{m} N_{i,p}(\xi) N_{j,q}(\eta) \mathbf{B}_{i,j}$$

set of control points $\mathbf{B}_{i,j} \in \mathbb{R}^d, d \geq 1$

.7 / 36

Marriage of geometry & analysis

Geometry & analysis in practice

Flow problems

• Convection-diffusion equation

$$\nabla \cdot (\mathbf{v}u - d\nabla u) = f$$

• Compressible Euler equations

$$\partial_t \begin{bmatrix} \rho \\ \rho \mathbf{v} \\ E \end{bmatrix} + \nabla \cdot \begin{bmatrix} \rho \mathbf{v} \\ \rho \mathbf{v} \otimes \mathbf{v} + \mathcal{I} \rho \\ \mathbf{v} (E+\rho) \end{bmatrix} = 0$$

Collaboration with A. Jaeschke from Technical University Łódź

Convection skew to the mesh

Convection skew to the mesh

21 / 36

Convection skew to the mesh

TUDelft

Stationary isentropic vortex

Animation: Rotation of isentropic vortex (ρ-values)

TUDelft

Gray-Scott reaction-diffusion model

$$u_t + u(\ln \sqrt{g_t})_t - d_1 \Delta u = F(1 - u) - uv^2$$
$$v_t + v(\ln \sqrt{g_t})_t - d_2 \Delta v = -(F + H)v + uv^2$$
$$\mathbf{s} = Kv\mathbf{n}$$

MSc-thesis by J. Hinz from Technical University Delft

Brain development

- multi-patch geometry
- periodic basis functions
- C^{p-1} continuity along patch boundaries
- C⁰ continuity in the vicinity of the triple points

Brain development

- multi-patch geometry
- periodic basis functions
- C^{p-1} continuity along patch boundaries
- C⁰ continuity in the vicinity of the triple points

Brain development

- multi-patch geometry
- periodic basis functions
- C^{p-1} continuity along patch boundaries
- C⁰ continuity in the vicinity of the triple points

Collaboration with Deltares

Material Point Method

- Represent properties of continuum (velocity, stresses, etc.) at material points and let particles move in time
- Solve equations of motion on fixed background grid

What people like about it

- Easy treatment of free-surface, multi-phase/-material problems
- Easy treatment of large deformations (no mesh tangling)
- Easy treatment of convection (no spurious wiggles)

Collaboration with Deltares

Material Point Method

- Represent properties of continuum (velocity, stresses, etc.) at material points and let particles move in time
- Solve equations of motion on fixed background grid

What people 'fear' about it

- Occurrence of grid crossing errors/empty cells
- Poor convergence or even lack of convergence
- Accurate data transfer between particles and dof's in FEM
- Singularity of lumped mass matrix in higher-order FEM

The Material Point Method

▲□▶ < □▶ < □▶ < □▶ < □▶ < □▶
 ● < ○ < ○

26 / 36

Building blocks of MPM

Update of particle properties from dof's

$$\Delta \epsilon_p^{t+\Delta t} = \sum_{i=1}^{N_{\rm dof}} \nabla \phi_i(x_p^t) \Delta u_i^{t+\Delta t}$$

Update of dof's from particle properties

$$\mathbf{F}_{i}^{\mathrm{int,t}} = \sum_{\rho=1}^{N_{\mathrm{p}}} \sigma_{\rho}^{t} \nabla \phi_{i}(\mathbf{x}_{\rho}^{t}) V_{\rho}^{t}$$

▲□▶▲舂▶▲콜▶▲콜▶ 콜 ∽੧੧੦

IgA the better alternative to FEM?

- Lagrange-type basis functions φ_i are C⁰ across element boundaries so that the values of ∇φ_i can have jumps
- Lumped mass matrix can become singular

lgA

- B-spline basis functions N_{i,p} are C^{p-1} across element boundaries so that ∇N_{i,p} is C^{p-2} (continuous for p ≥ 2)
- Lumped mass matrix is non-singular

Vibrating bar

TUDelft

 $\frac{\partial^2 u}{\partial t^2} = \frac{E}{\rho} \frac{\partial^2 u}{\partial x^2}$ Boundary conditions: u(0, t) = 0u(L, t) = 0Initial conditions: u(x, 0) = 0 $\frac{\partial u}{\partial t}(x,0) = v_0 \sin\left(\frac{\pi x}{L}\right)$

9 / 36

Application: Vibrating bar

MSc-project by R. Tielen (jointly supervised with L. Beuth)

Soil column under self weight

TUDelft

 $\frac{\partial^2 u}{\partial t^2} = \frac{E}{\rho} \frac{\partial^2 u}{\partial \gamma^2} - g$ Boundary conditions: u(0, t) = 0 $\frac{\partial u}{\partial y}(H,t)=0$ Initial conditions: u(y,0) = 0 $\frac{\partial u}{\partial t}(y,0) = 0$

31 / 36

Application: Oedometer

MSc-project by R. Tielen (jointly supervised with L. Beuth)

TUDelft

Application: Oedometer

MSc-project by R. Tielen (jointly supervised with L. Beuth)

tUDelft

Building blocks of your FEM code

Finite element loop

$$A = \sum_{e \in \mathcal{T}_h} C_e K_e C_e^\top$$
$$b = \sum C_e f_e$$

 $e \in \mathcal{T}_h$

- Element matrix K_e and vector f_e
- Connectivity matrix *C_e* (local-global mapping)

Numerical quadrature

$$\int_{a}^{b} f(x)dx \approx \sum_{c=0}^{N} \omega_{c}f(x_{c}) \quad \text{Quadrature weights } \omega_{c}$$
Quadrature points x_{c}

Building blocks of your IgA code

Loop over elements in index domain

$$A = \sum_{e=1}^{n+p} C_e K_e C_e^ op$$
 $b = \sum_{e=1}^{n+p} C_e f_e$

- Element matrix K_e and vector f_e
- Connectivity matrix *C_e* (local-global mapping)

Numerical quadrature

$$\int_{a}^{b} f(x) dx \approx \sum_{c=1}^{N} \omega_{c} f(x_{c})$$

- Quadrature weights ω_c
- Quadrature points x_c

TUDelft

Conclusions

Isogeometric Analysis has several advantages over standard FEM

- parametric geometry representation
- no singular lumped mass matrices
- no grid crossing errors in MPM
- Conversion of FEM code into IgA is straightforward
- Established techniques to reconstruct parametric curves, surfaces, and volumes from non-uniform sampling data
 - multi-variate spline interpolation
 - least-squares spline approximation

List of IgA software packages

- G+SMO: http://www.gs.jku.at/gs_gismo.shtml
- igatools: https://github.com/igatoolsProject/igatools/wiki
- PetIGA: https://bitbucket.org/dalcinl/petiga/
- GeoPDEs: http://rafavzqz.github.io/geopdes/
- igafem: https://sourceforge.net/projects/cmcodes/
- deal.II: https://dealii.org
- LS-DYNA: http://www.lstc.com/products/ls-dyna

