Isogeometric Analysis The better alternative to FEM? Delft Institute of Applied Mathematics

Matthias Möller (m.moller@tudelft.nl) 23 March 2016

Aim of this lunch lecture

- Give a brief introduction to Isogeometric Analysis
- Outline advantages of $\lg A$ over the Finite Element Method
- Address practical transformation of a FEM into an $\lg A$ code

The Finite Element Method

Strong problem formulation

Find u such that

$$
L u=f \quad \text { in } \Omega, \text { subject to BC's and IC's. }
$$

The Finite Element Method

Strong problem formulation

Find u such that

$$
L u=f \quad \text { in } \Omega, \text { subject to BC's and IC's. }
$$

Variational formulation

Find $u \in V$ such that

$$
\int_{\Omega} w L u \mathrm{~d} \mathbf{x}=\int_{\Omega} w f \mathrm{~d} \mathbf{x} \quad \text { for all } w \in W
$$

subject to BC's and IC's.

The Finite Element Method

Strong problem formulation

Find u such that

$$
L u=f \quad \text { in } \Omega, \text { subject to BC's and IC's. }
$$

Discretised variational formulation

Find $u_{h} \in V_{h} \subset V$ such that

$$
\int_{\Omega_{\mathrm{h}}} w_{h} L u_{h} \mathrm{~d} \mathbf{x}=\int_{\Omega_{\mathrm{h}}} w_{h} f \mathrm{~d} \mathbf{x} \quad \text { for all } w_{h} \in W_{h} \subset W
$$

subject to $B C$'s and IC's.

Is $h=\mathrm{h}$?

THDelft

Is $h=\mathrm{h}$?

No, since the triangulation \mathcal{T}_{h} of the geometry Ω_{h} is in many cases of lower polynomial order (e.g., pw. linear) than the approximation of the solution u_{h} (e.g., pw. quadratic or higher)


```
Is \(h=\mathrm{h}\) ?
```

No, since the triangulation \mathcal{T}_{h} of the geometry Ω_{h} is in many cases of lower polynomial order (e.g., pw. linear) than the approximation of the solution u_{h} (e.g., pw. quadratic or higher)

Theoretical problem

But we require computational meshes that represent the curved boundary with high accuracy to obtain optimal convergence

$$
\left\|u-u_{h}\right\|=\mathcal{O}\left(h^{p+1}\right)
$$

Is $h=\mathrm{h}$?

Even worse, in many practical simulations the geometry is only given as surface triangulation \mathcal{S}_{h} from which the volumetric triangulation \mathcal{T}_{h} of the domain Ω_{h} needs to be constructed

TUDelft

Is $h=\mathrm{h}$?

Even worse, in many practical simulations the geometry is only given as surface triangulation \mathcal{S}_{h} from which the volumetric triangulation \mathcal{T}_{h} of the domain Ω_{h} needs to be constructed

THDelft

Common problems with the FEM

(1) How to accurately refine, coarsen and/or deform Ω_{h} without a parametric description of the true geometry Ω ?
(2) How to generate high-quality curved computational meshes for high-order methods in complex geometries?
(3) How to define normal vectors along element boundaries?
(4) How to construct finite element basis functions with C^{1} continuity (or higher) across element boundaries?

- Would lead to globally continuous derivative field
- Would solve many problems with Material Point Method

Example

Poisson's problem

Find u such that

$$
\begin{aligned}
&-\Delta u=f \\
& \text { in } \Omega=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\} \\
& u=0 \\
& \text { on } \Gamma=\partial \Omega
\end{aligned}
$$

Discretised variational formulation

Find $u_{h} \in V_{h}=\left\{u_{h} \in \mathcal{H}^{1}\left(\Omega_{\mathrm{h}}\right): u_{h}=0\right.$ on $\left.\Gamma\right\}$ such that

$$
\int_{\Omega_{\mathrm{h}}} \nabla w_{h} \cdot \nabla u_{h} \mathrm{~d} \mathbf{x}=\int_{\Omega_{\mathrm{h}}} w_{h} f \mathrm{~d} \mathbf{x} \quad \text { for all } w_{h} \in W_{h}=V_{h}
$$

Example

The finite element solution with pw. linear boundary approximation and pw. quadratic basis functions looks like this

fudelft

Example

The finite element solution with pw. linear boundary approximation and pw. quadratic basis functions looks like this

THDelft

The mission

Isogeometric Analysis

Computational analysis framework that ensures $h=\mathrm{h}$

- Make use of a parametric description of the geometry $\left(\Omega=\Omega_{h}\right)$ throughout all computational steps (FE-analysis, refinement/ coarsening, shape deformation, multi-physics coupling, ...)
- Use the same mathematical tools (B-splines or NURBS or ...) to represent the geometry Ω_{h} and the FE-solution u_{h}

Polynomial spaces

Polynomial space

The space of polynomials of degree p over the interval $[a, b]$ is

$$
\Pi^{p}([a, b]):=\left\{q(x) \in \mathcal{C}^{\infty}([a, b]): q(x)=\sum_{i=0}^{p} c_{i} x^{i}, c_{i} \in \mathbb{R}\right\}
$$

Example: $\Pi^{2}([0,1])$

- Canonical basis

$$
\mathcal{B}=\left\{1, x, x^{2}\right\}
$$

- Polynomials

$$
q(x)=c_{0}+c_{1} x+c_{2} x^{2}
$$

THDelft

Spline space

Polynomial splines

Let $\mathcal{P}=\left\{a=x_{1}<\cdots<x_{p+1}=b\right\}$ be a partition of the interval Ω_{0} and $\mathcal{M}=\left\{1 \leq m_{i} \leq p+1\right\}$ a set of positive integers. The polynomial spline of degree p is defined as $s: \Omega_{0} \mapsto \mathbb{R}$ if

$$
\begin{array}{ll}
\left.s\right|_{\left[x_{i}, x_{i+1}\right]} \in \Pi^{p}\left(\left[x_{i}, x_{i+1}\right]\right), & \\
& i=1, \ldots, k \\
\frac{d^{j}}{d x^{j}} s_{i-1}\left(x_{i}\right)=\frac{d^{j}}{d x^{j}} s_{i}\left(x_{i}\right), & \\
& i=2, \ldots, k \\
& j=0, \ldots, p-m_{i}
\end{array}
$$

Polynomial splines of degree p form the spline space $\mathcal{S}\left(\Omega_{0}, p, \mathcal{M}, \mathcal{P}\right)$.

Open knot vector

An open knot vector is a sequence of non-decreasing coordinates
$\xi_{i} \in[a, b] \subset \mathbb{R}$ in the parameter space $\Omega_{0}=[a, b]$

$$
\equiv=(\underbrace{\xi_{1}=\cdots=\xi_{p+1}}_{p+1 \text { times }}, \ldots, \underbrace{\xi_{i}, \ldots, \xi_{i}}_{m_{i} \text { times }}, \ldots, \underbrace{\xi_{n+1}=\cdots=\xi_{n+p+1}}_{p+1 \text { times }})
$$

where

- p is the polynomial order of the B-splines
- n is the number of B-spline functions
- ξ_{i} is the i-th knot with knot index i
- m_{i} is the multiplicity of knot ξ_{i}

B-spline basis functions

Cox-de Boor recursion formula

$$
p=0
$$

$$
N_{i, 0}(\xi)= \begin{cases}1 & \text { if } \xi_{i} \leq \xi<\xi_{i+1} \\ 0 & \text { otherwise }\end{cases}
$$

$p>0$

$$
N_{i, p}(\xi)=\frac{\xi-\xi_{i}}{\xi_{i+p}-\xi_{i}} N_{i, p-1}(\xi)+\frac{\xi_{i+p+1}-\xi}{\xi_{i+p+1}-\xi_{i+1}} N_{i+1, p-1}(\xi)
$$

B-spline basis functions

Constant basis functions corresponding to $\Xi=\{0,0,0,1,2,3,3,3\}$

B-spline basis functions

Constant basis functions corresponding to $\Xi=\{0,0,0,1,2,3,3,3\}$

B-spline basis functions

Constant basis functions corresponding to $\Xi=\{0,0,0,1,2,3,3,3\}$

B-spline basis functions

Linear basis functions corresponding to $\bar{\equiv}=\{0,0,0,1,2,3,3,3\}$

B-spline basis functions

Linear basis functions corresponding to $\bar{\Xi}=\{0,0,0,1,2,3,3,3\}$

B-spline basis functions

Linear basis functions corresponding to $\bar{\Xi}=\{0,0,0,1,2,3,3,3\}$

B-spline basis functions

Linear basis functions corresponding to $\bar{\Xi}=\{0,0,0,1,2,3,3,3\}$

B-spline basis functions

Linear basis functions corresponding to $\bar{\Xi}=\{0,0,0,1,2,3,3,3\}$

B-spline basis functions

Quadratic basis functions corresponding to $\equiv=\{0,0,0,1,2,3,3,3\}$

B-spline basis functions

Quadratic basis functions corresponding to $\equiv=\{0,0,0,1,2,3,3,3\}$

B-spline basis functions

Quadratic basis functions corresponding to $\equiv=\{0,0,0,1,2,3,3,3\}$

B-spline basis functions

Quadratic basis functions corresponding to $\equiv=\{0,0,0,1,2,3,3,3\}$

B-spline basis functions

Quadratic basis functions corresponding to $\equiv=\{0,0,0,1,2,3,3,3\}$

B-spline basis functions

Quadratic basis functions corresponding to $\bar{\Xi}=\{0,0,0,1,2,3,3,3\}$

Properties of B-spline basis functions

Compact support

$$
\operatorname{supp} N_{i, p}(\xi)=\left[\xi_{i}, \xi_{i+p+1}\right), \quad i=1, \ldots, n
$$

- System matrices are sparse like in the standard FEM
- Support grows with the polynomial order so that system matrices have a slightly broader stencil due to the coupling of degrees of freedom over multiple element layers

Properties of B-spline basis functions

Compact support

$$
\operatorname{supp} N_{i, p}(\xi)=\left[\xi_{i}, \xi_{i+p+1}\right), \quad i=1, \ldots, n
$$

Strict positiveness

$$
N_{i, p}(\xi)>0 \quad \text { for } \xi \in\left(\xi_{i}, \xi_{i+p+1}\right), \quad i=1, \ldots, n
$$

- Consistent mass matrix has no negative off-diagonal entries
- Lumped mass matrix is not singular (no zero diagonal entries)

THDelft

Properties of B-spline basis functions

Compact support

$$
\operatorname{supp} N_{i, p}(\xi)=\left[\xi_{i}, \xi_{i+p+1}\right), \quad i=1, \ldots, n
$$

Strict positiveness

$$
N_{i, p}(\xi)>0 \quad \text { for } \xi \in\left(\xi_{i}, \xi_{i+p+1}\right), \quad i=1, \ldots, n
$$

Partition of unity

$$
\sum_{i=1}^{n} N_{i, p}(\xi)=1 \quad \text { for all } \xi \in[a, b]
$$

THDelft

Parametric geometry description

Spline curve

$$
C(\xi)=\sum_{i=1}^{n} N_{i, p}(\xi) \mathbf{B}_{i} \quad \text { set of control points } \mathbf{B}_{i} \in \mathbb{R}^{d}, d \geq 1
$$

Parametric geometry description

Spline surface

$$
S(\xi, \eta)=\sum_{i=1}^{n} \sum_{j=1}^{m} N_{i, p}(\xi) N_{j, q}(\eta) \mathbf{B}_{i, j}
$$

set of control points
$\mathbf{B}_{i, j} \in \mathbb{R}^{d}, d \geq 1$

T̛TUDelft

Marriage of geometry \& analysis

Spline volume

$$
V(\xi, \eta, \zeta)=\sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{k=1}^{1} N_{i, p}(\xi) N_{j, q}(\eta) N_{k, r}(\zeta) \mathbf{B}_{i, j, k}
$$

Approximate solution

$$
u_{h}(\xi, \eta, \zeta)=\sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{k=1}^{\prime} N_{i, p}(\xi) N_{j, q}(\eta) N_{k, r}(\zeta) u_{i, j, k}
$$

Geometry \& analysis in practice

Isogeometric Analysis

(1) Construct parametric geometry $\Omega(\xi, \eta, \zeta)$:

- generate basis $\mathcal{B}=\left\{N_{i, p} N_{j, q} N_{k, r}\right\}_{i, j, k}^{n, m}$ and
- choose control points $\left\{\mathbf{B}_{i, j, k}\right\}$
(2) Construct computational mesh $\Omega_{\mathrm{h}}(\xi, \eta, \zeta)$ and computational basis \mathcal{B}_{h} by shape preserving
- knot insertion (h-refinement);
- order elevation (p-refinement);
- regularity adjustment (k-refinement)

Application: IgA for flow problems

Flow problems

- Convection-diffusion equation

$$
\nabla \cdot(\mathbf{v} u-d \nabla u)=f
$$

- Compressible Euler equations

$$
\partial_{t}\left[\begin{array}{c}
\rho \\
\rho \mathbf{v} \\
E
\end{array}\right]+\nabla \cdot\left[\begin{array}{c}
\rho \mathbf{v} \\
\rho \mathbf{v} \otimes \mathbf{v}+\mathcal{I} p \\
\mathbf{v}(E+p)
\end{array}\right]=0
$$

Collaboration with A. Jaeschke from Technical University Łódź

Application: IgA for flow problems

Convection skew to the mesh

THDelft

$21 / 36$

Application: IgA for flow problems

Convection skew to the mesh

Application: IgA for flow problems

Convection skew to the mesh

TUD

Application: IgA for flow problems

Stationary isentropic vortex

ρ

v_{x}

v_{y}

- Animation: Rotation of isentropic vortex (ρ-values)

THDelft

Application: IgA on evolving manifolds

Gray-Scott reaction-diffusion model

$$
\begin{aligned}
u_{t}+u\left(\ln \sqrt{g_{t}}\right)_{t}-d_{1} \Delta u & =F(1-u)-u v^{2} \\
v_{t}+v\left(\ln \sqrt{g_{t}}\right)_{t}-d_{2} \Delta v & =-(F+H) v+u v^{2} \\
\mathbf{s} & =K v \mathbf{n}
\end{aligned}
$$

MSc-thesis by J. Hinz from Technical University Delft

Application: IgA on evolving manifolds

Brain development

- multi-patch geometry
- periodic basis functions
- C^{p-1} continuity along patch boundaries
- C^{0} continuity in the vicinity of the triple points

THDelft

Application: IgA on evolving manifolds

Brain development

- multi-patch geometry
- periodic basis functions
- C^{p-1} continuity along patch boundaries
- C^{0} continuity in the vicinity of the triple points

THDelft

Application: IgA on evolving manifolds

Brain development

- multi-patch geometry
- periodic basis functions
- C^{p-1} continuity along patch boundaries
- C^{0} continuity in the vicinity of the triple points

Collaboration with Deltares

Material Point Method

- Represent properties of continuum (velocity, stresses, etc.) at material points and let particles move in time
- Solve equations of motion on fixed background grid

What people like about it

- Easy treatment of free-surface, multi-phase/-material problems
- Easy treatment of large deformations (no mesh tangling)
- Easy treatment of convection (no spurious wiggles)

Collaboration with Deltares

Material Point Method

－Represent properties of continuum（velocity，stresses，etc．） at material points and let particles move in time
－Solve equations of motion on fixed background grid

What people＇fear＇about it
－Occurrence of grid crossing errors／empty cells
－Poor convergence or even lack of convergence
－Accurate data transfer between particles and dof＇s in FEM
－Singularity of lumped mass matrix in higher－order FEM

The Material Point Method

TUDelft

Building blocks of MPM

Update of particle properties from dof's

$$
\Delta \epsilon_{p}^{t+\Delta t}=\sum_{i=1}^{N_{\mathrm{dof}}} \nabla \phi_{i}\left(x_{p}^{t}\right) \Delta u_{i}^{t+\Delta t}
$$

Update of dof's from particle properties

$$
\mathbf{F}_{i}^{\mathrm{int}, \mathrm{t}}=\sum_{p=1}^{N_{\mathrm{p}}} \sigma_{p}^{t} \nabla \phi_{i}\left(x_{p}^{t}\right) V_{p}^{t}
$$

IgA the better alternative to FEM?

FEM

- Lagrange-type basis functions ϕ_{i} are C^{0} across element boundaries so that the values of $\nabla \phi_{i}$ can have jumps
- Lumped mass matrix can become singular
$\lg A$
- B-spline basis functions $N_{i, p}$ are C^{p-1} across element boundaries so that $\nabla N_{i, p}$ is C^{p-2} (continuous for $p \geq 2$)
- Lumped mass matrix is non-singular

Vibrating bar

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{E}{\rho} \frac{\partial^{2} u}{\partial x^{2}}
$$

Boundary conditions:

$$
\begin{aligned}
& u(0, t)=0 \\
& u(L, t)=0
\end{aligned}
$$

Initial conditions:

$$
\begin{aligned}
& u(x, 0)=0 \\
& \frac{\partial u}{\partial t}(x, 0)=v_{0} \sin \left(\frac{\pi x}{L}\right)
\end{aligned}
$$

Application: Vibrating bar

MSc-project by R. Tielen (jointly supervised with L. Beuth)
TUDelft

Soil column under self weight

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{E}{\rho} \frac{\partial^{2} u}{\partial y^{2}}-g
$$

Boundary conditions:

$$
u(0, t)=0
$$

$$
\frac{\partial u}{\partial y}(H, t)=0
$$

Initial conditions:

$$
\begin{gathered}
u(y, 0)=0 \\
\frac{\partial u}{\partial t}(y, 0)=0
\end{gathered}
$$

Application: Oedometer

MSc-project by R. Tielen (jointly supervised with L. Beuth)
TUDelft

Application: Oedometer

MSc-project by R. Tielen (jointly supervised with L. Beuth)

Building blocks of your FEM code

Finite element loop

$$
\begin{aligned}
A & =\sum_{e \in \mathcal{T}_{h}} C_{e} K_{e} C_{e}^{\top} \\
b & =\sum_{e \in \mathcal{T}_{h}} C_{e} f_{e}
\end{aligned}
$$

- Element matrix K_{e} and vector f_{e}
- Connectivity matrix C_{e} (local-global mapping)

Numerical quadrature

$$
\int_{a}^{b} f(x) d x \approx \sum_{c=0}^{N} \omega_{c} f\left(x_{c}\right) \quad \text { • Quadrature weights } \omega_{c}
$$

Building blocks of your IgA code

Loop over elements in index domain

$$
\begin{aligned}
A & =\sum_{e=1}^{n+p} C_{e} K_{e} C_{e}^{\top} \\
b & =\sum_{e=1}^{n+p} C_{e} f_{e}
\end{aligned}
$$

- Element matrix K_{e} and vector f_{e}
- Connectivity matrix C_{e} (local-global mapping)

Numerical quadrature

$$
\int_{a}^{b} f(x) d x \approx \sum_{c=1}^{N} \omega_{c} f\left(x_{c}\right) \stackrel{\bullet \text { Quadrature weights } \omega}{ } \text { Quadrature points } x_{c}
$$

TUDelft

Conclusions

- Isogeometric Analysis has several advantages over standard FEM
- parametric geometry representation
- no singular lumped mass matrices
- no grid crossing errors in MPM
- Conversion of FEM code into $\lg A$ is straightforward
- Established techniques to reconstruct parametric curves, surfaces, and volumes from non-uniform sampling data
- multi-variate spline interpolation
- least-squares spline approximation

List of IgA software packages

- G+SMO: http://www.gs.jku.at/gs_gismo.shtml
- igatools:
https://github.com/igatoolsProject/igatools/wiki
- PetIGA: https://bitbucket.org/dalcinl/petiga/
- GeoPDEs: http://rafavzqz.github.io/geopdes/
- igafem: https://sourceforge.net/projects/cmcodes/
- deal.II: https://dealii.org
- LS-DYNA: http://www.lstc.com/products/ls-dyna

