Bridging the gap between isogeometric analysis and deep operator learning

Matthias Möller
Department of Applied Mathematics
Delft University of Technology, The Netherlands

Acknowledgements: Ye Ji, Hugo Verhelst, Mengyun Wang (TU Delft), Jochen Hinz, Merle Backmeyer (ETH Zurich), Casper van Leeuwen (SURF), Jaewook Lee (TU Vienna), Veronika Trávníková (RWTH Aachen), ...

Bridging the gap between CAD and FEA by using B-spline or
 NURBS basis functions for design and analysis . . .

Isogeometric Analysis

Toward Integration of CAD and FEA

CAD

FEA

CAD

FEA

CAD

FEA

FEA

Vision

Vision

1. Creation of VReps from BReps

2. Reparameterization techniques

3. Isogeometric Analysis and IgANets

4. Interactive Design-through-Analysis

Spline curves

Univariate B-splines

$$
\Xi=\{0,0,0,1,2,3,3,4,4,4\}, \quad n=7, \quad d=2
$$

B-spline basis functions [de Boor, 1971]

$$
\begin{aligned}
& b_{i ; \Xi}^{0}(\xi)= \begin{cases}1 & \text { if } \xi_{i} \leq \xi<\xi_{i+1} \\
0 & \text { otherwise }\end{cases} \\
& b_{i ; \Xi}^{d}(\xi)=\frac{\xi-\xi_{i}}{\xi_{i+d}-\xi_{i}} b_{i ; \Xi}^{d-1}(\xi)+\frac{\xi_{i+d+1}-\xi}{\xi_{i+d+1}-\xi_{i+1}} b_{i+1 ; \Xi}^{d-1}(\xi) \quad{ }^{\prime \prime} \frac{0^{\prime \prime}}{0}:=0
\end{aligned}
$$

Univariate B-splines

B-spline basis functions [de Boor, 1971]

$$
\begin{aligned}
& b_{i ; \Xi}^{0}(\xi)= \begin{cases}1 & \text { if } \xi_{i} \leq \xi<\xi_{i+1} \\
0 & \text { otherwise }\end{cases} \\
& b_{i ; \Xi}^{d}(\xi)=\frac{\xi-\xi_{i}}{\xi_{i+d}-\xi_{i}} b_{i ; \Xi}^{d-1}(\xi)+\frac{\xi_{i+d+1}-\xi}{\xi_{i+d+1}-\xi_{i+1}} b_{i+1 ; \Xi}^{d-1}(\xi) \quad{ }^{\prime \prime} \frac{0^{\prime \prime}}{0}:=0
\end{aligned}
$$

Univariate B-splines

$$
\Xi=\{0,0,0,1,23,3,4,4,4\}, \quad n=7, \quad d=2
$$

B-spline basis functions [de Boor, 1971]

$$
\begin{aligned}
& b_{i ; \Xi}^{0}(\xi)= \begin{cases}1 & \text { if } \xi_{i} \leq \xi<\xi_{i+1} \\
0 & \text { otherwise }\end{cases} \\
& b_{i ; \Xi}^{d}(\xi)=\frac{\xi-\xi_{i}}{\xi_{i+d}-\xi_{i}} b_{i ; \Xi}^{d-1}(\xi)+\frac{\xi_{i+d+1}-\xi}{\xi_{i+d+1}-\xi_{i+1}} b_{i+1 ; \Xi}^{d-1}(\xi) \quad{ }^{\prime \prime} \frac{0^{\prime \prime}}{0}:=0
\end{aligned}
$$

Univariate B-splines

B-spline basis functions [de Boor, 1971]

$$
\begin{aligned}
& b_{i ; \Xi}^{0}(\xi)= \begin{cases}1 & \text { if } \xi_{i} \leq \xi<\xi_{i+1} \\
0 & \text { otherwise }\end{cases} \\
& b_{i ; \Xi}^{d}(\xi)=\frac{\xi-\xi_{i}}{\xi_{i+d}-\xi_{i}} b_{i ; \Xi}^{d-1}(\xi)+\frac{\xi_{i+d+1}-\xi}{\xi_{i+d+1}-\xi_{i+1}} b_{i+1 ; \Xi}^{d-1}(\xi) \quad{ }^{\prime \prime} \frac{0^{\prime \prime}}{0}:=0
\end{aligned}
$$

Multivariate B-splines

Tensor-product basis functions

$$
b_{\mathbf{i} ; \boldsymbol{\Xi}}^{\mathbf{d}}(\boldsymbol{\xi})=\prod_{k=1}^{p} b_{i_{k} ; \Xi_{k}}^{d_{k}}\left(\xi_{k}\right)
$$

with multi-indices \mathbf{i} and $\mathbf{d}, \boldsymbol{\Xi}=\left(\Xi_{1}, \ldots, \Xi_{p}\right)$ and parametric domain

$$
\hat{\Omega}_{\Xi}=\bigotimes_{k=1}^{p}\left[\xi_{k, d_{k}+1}, \xi_{k, n_{k}}\right)
$$

Spline space

$$
\mathbb{S}_{\Xi}^{\mathbf{d}, s}=\operatorname{span}\left\{b_{1 ; \Xi}^{\mathbf{d}}, \ldots, b_{\mathbf{n} ; \Xi}^{\mathbf{d}}\right\}=\left\{\sum_{\mathbf{i}=\mathbf{1}}^{\mathbf{n}} c_{\mathbf{i}} b_{\mathbf{i} ; \Xi}^{\mathbf{d}}(\boldsymbol{\xi}): c_{\mathbf{i}} \in \mathbb{R}^{s}, \text { for } \mathbf{1} \leq \mathbf{i} \leq \mathbf{n}, \boldsymbol{\xi} \in \hat{\Omega}_{\Xi}\right\}
$$

Isogeometric analysis in a nutshell

$$
u_{D}(\boldsymbol{\xi})=\sum_{\mathbf{i} \in \mathcal{F}_{b d r}} u_{\mathbf{i}} \mathbf{x}_{\mathbf{i}} b_{\mathbf{i} ; \Xi}^{\mathbf{d}}(\boldsymbol{\xi}) \quad f(\boldsymbol{\xi})=\sum_{\mathbf{i} \in \mathcal{F}_{\text {all }}} f_{\mathbf{i}} \mathbf{x}_{\mathbf{i}} b_{\mathbf{i} ; \Xi}^{\mathbf{d}}(\boldsymbol{\xi})
$$

$$
\text { Compute solution } u(\boldsymbol{\xi})=u_{D}(\boldsymbol{\xi})+\sum_{\mathbf{i} \in \mathcal{F}_{i n t}} u_{\mathbf{i}} \mathbf{x}_{\mathbf{i}} \mathrm{i}_{\mathbf{i} ; \mathbf{\Xi}}^{\mathbf{d}}(\boldsymbol{\xi}) \text { using Galerkin or collocation IGA }
$$

Automatic reparameterization of surfaces!

FEA

CAD
Automatic placement of interior control points!

Creation of analysis-suitable parameterizations

Algebraic methods

- Coons patch [Farin et al. 1999]
- spring patch [Gravesen et al. 2012], ...

Nonlinear methods

- constrained optimization [Wang et al. 2014, Pan et al. 2020],
- unconstrained optimization: barrier functions [Ji et al. 2021], penalty functions [Wang 2021, Ji 2022]
- Teichmüller mappings [Chen et al. 2016], low-rank quasi-conformal mappings [Pan et al. 2024], harmonic mappings [Martin et al. 2009, Nguyen et al. 2010, Xu et al. 2013, Falini et al. 2015]
- PDE-based methods [Hinz et al. 2018 \& 2020, Ji et al. 2023]

Comparison of methods

Workflow for planar domains

Ye Ji, Wed 10:30-12:30 in \#MS012A

Workflow for planar domains

Schwarz-Christoffel mapping

Riemann mapping theorem: \exists analytic function f with non-zero derivative such that $f(\mathscr{D})=\mathscr{P}$.

Scharz-Christoffel formula

$$
f(z)=f\left(z_{0}\right)+C \int_{z_{0}}^{z} \prod_{j=1}^{n}\left(1-\frac{\zeta}{z_{j}}\right)^{\alpha_{j} / \pi-1} d \zeta
$$

Solving the Schwarz-Christoffel parameter problem for $\left\{z_{j}\right\}$ numerically allows us to calculate sets of markers $\left\{\mathbf{P}_{i}^{\text {West }}\right\}$ and $\left\{\mathbf{P}_{i}^{\text {East }}\right\}$ on the two opposite curves $C^{\text {West }}$ and $C^{\text {East }}$ that can be used to reparameterize one curve w.r.t. the other

Y. Ji, MM, Y. Yu, Ch. Zhu, arXiv: 2403.10284

Boundary reparameterization

Theorem [Ji et al. 2024]: B-spline and NURBS basis functions are invariant under scaling and translation of the knot vector, i.e. $b_{i, \Xi}^{d}(\xi)=b_{i, \hat{\Xi}}^{d}(s \xi+t)$ with $\hat{\Xi}=s \Xi+t, \quad s>0$

Sketch of the reparameterization algorithm

- For each pair of markers $\left(\mathbf{P}_{i}^{\text {East }}, \mathbf{P}_{i}^{\text {West }}\right)$ identify the pair of parameters $\left(\xi_{i}^{\text {East }}, \xi_{i}^{\text {West }}\right)$ by solving the nonlinear equation $\left(C^{*}(\xi)-\mathbf{P}_{i}^{*}\right) \cdot \partial C^{*}(\xi) / \partial \xi=0$ using Newton's method
- Without loss of generality, align the segment of curve $C^{\text {East }}$ defined over the parameter interval $\left[\xi_{i}^{\text {East }}, \xi_{i+1}^{\text {East }}\right]$ with $C^{\text {West }}$ by applying an affine transformation
Y. Ji, MM, Y. Yu, Ch. Zhu, arXiv: 2403.10284

From boundary to planar domain parameterizations

Given: $\Gamma=C^{\text {North }} \cup C^{\text {South }} \cup C^{\text {East }} \cup C^{\text {West }}$ as push-forward from $\hat{\Gamma}$

Harmonic mapping: compute $\mathbf{x}: \hat{\Omega} \rightarrow \Omega$ by solving Laplace problems for $\mathbf{x}^{-1}=\boldsymbol{\xi}: \Omega \rightarrow \hat{\Omega}$

$$
\begin{aligned}
& \nabla \cdot\left[\mathbb{A} \nabla \xi_{1}\left(x_{1}, x_{2}\right)\right]=0 \\
& \nabla \cdot\left[\mathbb{A} \nabla \xi_{2}\left(x_{1}, x_{2}\right)\right]=0
\end{aligned} \quad \text { s.t. }\left.\mathbf{x}^{-1}\right|_{\Gamma}=\hat{\Gamma}
$$

with $\mathbb{A}=1\left[\right.$ Hinz et al. 2018] or $\mathbb{A}=\operatorname{diag}(1 /|\mathbf{J}|)$, Jacobian $\mathbf{J}\left(\xi_{1}, \xi_{2}\right)[$ Ji et al. 2023]

Radó-Kneser-Choquet theorem: convexity of $\hat{\Omega}$ ensures one-to-one mapping between $\hat{\Omega}$ and Ω

Computation of planar parameterization

Weak form in H^{2} [Hinz et al. 2018]

$$
\begin{aligned}
& \int_{\hat{\Omega}} \mathbf{w} \tilde{\mathscr{L}} \xi_{1} \mathrm{~d} \hat{\Omega}=\mathbf{0} \\
& \int_{\hat{\Omega}} \mathbf{w} \tilde{\mathscr{L}} \xi_{2} \mathrm{~d} \hat{\Omega}=\mathbf{0}
\end{aligned} \quad \text { s.t. }\left.\mathbf{x}^{-1}\right|_{\Gamma}=\hat{\Gamma}
$$

where $\tilde{\mathscr{L}}=\left(g_{22} \frac{\partial^{2}}{\partial \xi_{1}^{2}}-2 g_{12} \frac{\partial^{2}}{\partial \xi_{1} \partial \xi_{2}}+g_{11} \frac{\partial^{2}}{\partial \xi_{2}^{2}}\right) /\left(g_{11}+g_{22}\right)$

Weak form in H^{1} [Ji et al. 2023]

$$
\begin{aligned}
& \int_{\hat{\Omega}} \nabla \mathbf{w} \cdot \mathbb{A} \nabla \xi_{1} \mathrm{~d} \hat{\Omega}=\mathbf{0} \\
& \int_{\hat{\Omega}} \nabla \mathbf{w} \cdot \mathbb{A} \nabla \xi_{2} \mathrm{~d} \hat{\Omega}=\mathbf{0}
\end{aligned} \text { s.t. }\left.\mathbf{x}^{-1}\right|_{\Gamma}=\hat{\Gamma}
$$

Extension to trivariate parameterizations

Existence of one-to-one mapping is no longer ensured by RKC theorem for nonplaner domains but our approach is efficient and robust in practice when the nonlinear problems are solved with a preconditioned Anderson accelerator

Intermezzo: spline-based mesh generation

Y. Ji, 2024

Intermezzo: spline-based mesh generation

Y. Ji, 2024

Intermezzo: spline-based mesh generation

Y. Ji, 2024

Intermezzo: spline-based mesh generation + simulation

Y. Ji, 2024

Intermezzo: spline-based mesh generation + simulation

Y. Ji, 2024

1. Creation of VReps
from BReps
2. Reparameterization
techniques

3. Isogeometric Analysis and IgANets
4. Interactive Design-through-Analysis

Galerkin IgA

Weighted residual form

Model problem
$\mathscr{L} u=f \quad$ in Ω
$\mathscr{B} u=g \quad$ on Γ

$$
\int_{\Omega} \phi_{\Omega}(\mathscr{L} u-f) \mathrm{d} \Omega+\int_{\Gamma} \phi_{\Gamma}(\mathscr{B} u-g) \mathrm{d} \Gamma=0
$$

Procedure

1. Integrate by parts to equilibrate C^{ℓ} between test and trial functions
2. Integrate natural boundary conditions into boundary integral term
3. Discretize (evaluate integrals on parametric domain) + solve

Collocation IgA

Weighted residual form

$$
\int_{\Omega} \phi_{\Omega}(\mathscr{L} u-f) \mathrm{d} \Omega+\int_{\Gamma} \phi_{\Gamma}(\mathscr{B} u-g) \mathrm{d} \Gamma=0
$$

Let

$$
\phi_{\Omega}=\sum_{i=1}^{k} \delta_{\Omega}\left(\mathbf{x}-\mathbf{x}_{i}\right) c_{i} \quad\left(\mathbf{x}_{i} \in \Omega\right) \quad \text { and } \quad \phi_{\Gamma}=\sum_{i=k+1}^{n} \delta_{\Gamma}\left(\mathbf{x}-\mathbf{x}_{i}\right) c_{i} \quad\left(\mathbf{x}_{i} \in \Gamma\right)
$$

then

$$
\sum_{i=1}^{k}\left(\mathscr{L} u\left(\mathbf{x}_{i}\right)-f\left(\mathbf{x}_{i}\right)\right) c_{i}+\sum_{i=1+k}^{n}\left(\mathscr{B} u\left(\mathbf{x}_{i}\right)-g\left(\mathbf{x}_{i}\right)\right) c_{i}=0
$$

Collocation IgA

As the coefficients c_{i} are arbitrary we obtain

$$
\begin{array}{ll}
\mathscr{L} u\left(\mathbf{x}_{i}\right)=f\left(\mathbf{x}_{i}\right) & i=1, \ldots, k \\
\mathscr{B} u\left(\mathbf{x}_{i}\right)=g\left(\mathbf{x}_{i}\right) & \\
i=k+1, \ldots, n
\end{array}
$$

replacing $u \approx u_{h}=\sum_{j=1}^{n} u_{j} b_{j}(\mathbf{x})$ yields

$$
\left[\begin{array}{ccc}
\mathscr{L} b_{1}\left(\mathbf{x}_{1}\right) & \ldots & \mathscr{L} b_{n}\left(\mathbf{x}_{1}\right) \\
\vdots & \ddots & \vdots \\
\mathscr{L} b_{1}\left(\mathbf{x}_{k}\right) & \ldots & \mathscr{L} b_{n}\left(\mathbf{x}_{k}\right) \\
\mathscr{B} b_{1}\left(\mathbf{x}_{k+1}\right) & \ldots & \mathscr{B} b_{n}\left(\mathbf{x}_{k+1}\right) \\
\vdots & \ddots & \vdots \\
\mathscr{B} b_{1}\left(\mathbf{x}_{n}\right) & \ldots & \mathscr{B} b_{n}\left(\mathbf{x}_{n}\right)
\end{array}\right]\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{k} \\
u_{k+1} \\
\vdots \\
u_{n}
\end{array}\right]=\left[\begin{array}{c}
f\left(\mathbf{x}_{1}\right) \\
\vdots \\
f\left(\mathbf{x}_{k}\right) \\
g\left(\mathbf{x}_{k+1}\right) \\
\vdots \\
g\left(\mathbf{x}_{n}\right)
\end{array}\right]
$$

Collocation IgA

As the coefficients c_{i} are arbitrary we obtain

$$
\begin{array}{ll}
\mathscr{L} u\left(\mathbf{x}_{i}\right)=f\left(\mathbf{x}_{i}\right) & i=1, \ldots, k \\
\mathscr{B} u\left(\mathbf{x}_{i}\right)=g\left(\mathbf{x}_{i}\right) & i=k+1, \ldots, n
\end{array}
$$

replacing $u \approx u_{h}=\sum_{j=1}^{n} u_{j} b_{j}(\mathbf{x})$ yields

$$
\left[\begin{array}{ccc}
\mathscr{L} b_{1}\left(\mathbf{x}_{1}\right) & \ldots & \mathscr{L} b_{n}\left(\mathbf{x}_{1}\right) \\
\vdots & \ddots & \vdots \\
\mathscr{L} b_{1}\left(\mathbf{x}_{k}\right) & \ldots & \mathscr{L} b_{n}\left(\mathbf{x}_{k}\right) \\
\mathscr{B} b_{1}\left(\mathbf{x}_{k+1}\right) & \ldots & \mathscr{B} b_{n}\left(\mathbf{x}_{k+1}\right) \\
\vdots & \ddots & \vdots \\
\mathscr{B} b_{1}\left(\mathbf{x}_{n}\right) & \ldots & \mathscr{B} b_{n}\left(\mathbf{x}_{n}\right)
\end{array}\right]\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{k} \\
u_{k+1} \\
\vdots \\
u_{n}
\end{array}\right]=\left[\begin{array}{c}
f\left(\mathbf{x}_{1}\right) \\
\vdots \\
f\left(\mathbf{x}_{k}\right) \\
g\left(\mathbf{x}_{k+1}\right) \\
\vdots \\
g\left(\mathbf{x}_{n}\right)
\end{array}\right]
$$

- basis functions b_{i} need to be at least C^{ℓ} such that application of \mathscr{L} and \mathscr{B} is well-defined
- non-singular system matrix requires

> \#coll. pts = \#basfunc and all coll. points must be pairwise distinct

Collocation IgA

As the coefficients c_{i} are arbitrary we obtain

$$
\begin{array}{ll}
\mathscr{L} u\left(\mathbf{x}_{i}\right)=f\left(\mathbf{x}_{i}\right) & i=1, \ldots, k \\
\mathscr{B} u\left(\mathbf{x}_{i}\right)=g\left(\mathbf{x}_{i}\right) & i=k+1, \ldots, n
\end{array}
$$

replacing $u \approx u_{h}=\sum_{j=1}^{n} u_{j} b_{j}(\mathbf{x})$ yields

$$
\left[\begin{array}{ccc}
\mathscr{L} b_{1}\left(\mathbf{x}_{1}\right) & \ldots & \mathscr{L} b_{n}\left(\mathbf{x}_{1}\right) \\
\vdots & \ddots & \vdots \\
\mathscr{L} b_{1}\left(\mathbf{x}_{k}\right) & \ldots & \mathscr{L} b_{n}\left(\mathbf{x}_{k}\right) \\
\left.\mathscr{B} b_{1} \mathbf{x}_{k+1}\right) & \ldots & \left.\mathscr{B} b_{n} \mathbf{x}_{k+1}\right) \\
\vdots & \ddots & \vdots \\
\mathscr{B} b_{1}\left(\mathbf{x}_{n}\right) & \ldots & \mathscr{B} b_{n}\left(\mathbf{x}_{n}\right)
\end{array}\right]\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{k} \\
u_{k+1} \\
\vdots \\
u_{n}
\end{array}\right]=\left[\begin{array}{c}
f\left(\mathbf{x}_{1}\right) \\
\vdots \\
f\left(\mathbf{x}_{k}\right) \\
g\left(\mathbf{x}_{k+1}\right) \\
\vdots \\
g\left(\mathbf{x}_{n}\right)
\end{array}\right]
$$

- basis functions b_{i} need to be at least C^{ℓ} such that application of \mathscr{L} and \mathscr{B} is well-defined
- non-singular system matrix requires
\#coll. pts = \#basfunc and all coll. points must be pairwise distinct
- B-spline basis functions are defined on the parametric domain $\hat{\Omega}=(0,1)^{d}$, hence

$$
\begin{array}{r}
\mathscr{L}_{\mathbf{x}} b_{i}(\mathbf{x}) \rightarrow \mathscr{L}_{\xi} b_{i}(\boldsymbol{\xi}) \\
\mathscr{B}_{\mathbf{x}} b_{i}(\mathbf{x}) \rightarrow \mathscr{B}_{\xi} b_{i}(\boldsymbol{\xi}) \\
\text { and define } \mathbf{x}_{i}:=\mathbf{x}_{h}\left(\boldsymbol{\xi}_{i}\right)
\end{array}
$$

Galerkin vs. collocation IgA

M. Wang, 2023
 abs. error

Model problem
$-\Delta u=f \quad$ in Ω $u=g \quad$ on Γ

Galerkin vs. collocation IgA

M. Wang, 2023

Model problem
$-\Delta u=f \quad$ in Ω $u=g \quad$ on Γ

Influence of collocation points

Greville pts abs. error

Model problem
$-\Delta u=f \quad$ in Ω $u=g \quad$ on Γ

Clustered SC pts

Coll. IgA
abs. error

Influence of collocation points

$\begin{array}{ll} \rho-\theta & 0- \\ \phi & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	\bigcirc	\bigcirc	
¢ ○	\bigcirc	\bigcirc	- 0
\bigcirc	\bigcirc	\bigcirc	$\bigcirc \circ$
¢○ 0	\bigcirc	\bigcirc	$\bigcirc \bigcirc \bigcirc$

Greville pts

As finding the optimal position of collocation points is difficult, can't we instead increase their number to reduce the error?

Model problem
$-\Delta u=f \quad$ in Ω $u=g \quad$ on Γ

Clustered SC pts

Least-squares collocation IgA

When \#collocation points $\left(m_{1}+m_{2}\right)>$ \#degrees of freedom (n) then the system matrix is over-determined and the system cannot be solved regularly. However, we can solve it in least-squares sense

$$
\min _{u_{h}} \frac{1}{m_{1}} \sum_{i=1}^{m_{1}}\left\|\mathscr{L}_{\mathbf{x}} u_{h}\left(\mathbf{x}_{i}\right)-f\left(\mathbf{x}_{i}\right)\right\|^{2}+\frac{1}{m_{2}} \sum_{i=m_{1}+1}^{m_{1}+m_{2}}\left\|\mathscr{B}_{\mathbf{x}} u_{h}\left(\mathbf{x}_{i}\right)-g\left(\mathbf{x}_{i}\right)\right\|^{2}
$$

Least-squares collocation IgA

When \#collocation points $\left(m_{1}+m_{2}\right)>$ \#degrees of freedom (n) then the system matrix is over-determined and the system cannot be solved regularly. However, we can solve it in least-squares sense

$$
\min _{u_{h}} \frac{1}{m_{1}} \sum_{i=1}^{m_{1}}\left\|\mathscr{L}_{\mathbf{x}} u_{h}\left(\mathbf{x}_{i}\right)-f\left(\mathbf{x}_{i}\right)\right\|^{2}+\frac{1}{m_{2}} \sum_{i=m_{1}+1}^{m_{1}+m_{2}}\left\|\mathscr{B}_{\mathbf{x}} u_{h}\left(\mathbf{x}_{i}\right)-g\left(\mathbf{x}_{i}\right)\right\|^{2}
$$

Theoretical justification [Lin et al. 2020]: under certain conditions, the least-squares collocation IgA method is consistent and convergent. In essence, there must be at least one collocation point per element (e.g., Greville point) but we can use more to increase the sampling resolution.

Least-squares collocation IgA

From least-squares collocation IgA to $\lg A N e t s$

$$
\min _{u_{h}} \frac{1}{m_{1}} \sum_{i=1}^{m_{1}}\left\|\mathscr{L}_{\mathbf{x}} u_{h}\left(\mathbf{x}_{i}\right)-f\left(\mathbf{x}_{i}\right)\right\|^{2}+\frac{1}{m_{2}} \sum_{i=m_{1}+1}^{m_{1}+m_{2}}\left\|\mathscr{B}_{\mathbf{x}} u_{h}\left(\mathbf{x}_{i}\right)-g\left(\mathbf{x}_{i}\right)\right\|^{2}
$$

From least-squares collocation IgA to IgANets

$$
\begin{gathered}
\min _{u_{h}} \frac{1}{m_{1}} \sum_{i=1}^{m_{1}}\left\|\mathscr{L}_{\mathbf{x}} u_{h}\left(\mathbf{x}_{i}\right)-f\left(\mathbf{x}_{i}\right)\right\|^{2}+\frac{1}{m_{2}} \sum_{i=m_{1}+1}^{m_{1}+m_{2}}\left\|\mathscr{B}_{\mathbf{x}} u_{h}\left(\mathbf{x}_{i}\right)-g\left(\mathbf{x}_{i}\right)\right\|^{2} \\
\min _{\left\{u_{j}\right\}_{j}} \frac{1}{m_{1}} \sum_{i=1}^{m_{1}}\left\|\sum_{j=1}^{n} \mathscr{L}_{\xi} b_{j}\left(\boldsymbol{\xi}_{i}\right) u_{j}-b_{j}\left(\boldsymbol{\xi}_{i}\right) f_{j}\right\|^{2}+\frac{1}{m_{2}} \sum_{i=m_{1}+1}^{m_{1}+m_{2}}\left\|\sum_{j=1}^{n} \mathscr{B}_{\xi} b_{j}\left(\boldsymbol{\xi}_{i}\right) u_{j}-b_{j}\left(\boldsymbol{\xi}_{i}\right) g_{j}\right\|^{2}
\end{gathered}
$$

From least-squares collocation IgA to IgANets

$$
\begin{gathered}
\min _{u_{h}} \frac{1}{m_{1}} \sum_{i=1}^{m_{1}}\left\|\mathscr{L}_{\mathbf{x}} u_{h}\left(\mathbf{x}_{i}\right)-f\left(\mathbf{x}_{i}\right)\right\|^{2}+\frac{1}{m_{2}} \sum_{i=m_{1}+1}^{m_{1}+m_{2}}\left\|\mathscr{B}_{\mathbf{x}} u_{h}\left(\mathbf{x}_{i}\right)-g\left(\mathbf{x}_{i}\right)\right\|^{2} \\
\min _{\left(u_{j}\right\}_{j}} \frac{1}{m_{1}} \sum_{i=1}^{m_{1}} \| \sum_{j=1}^{n} \underbrace{\mathscr{L}_{\xi} b_{j}(\boldsymbol{\xi}) u_{j}-u_{j}-b_{j}\left(\boldsymbol{\xi}_{i}\right) f_{j}\left\|^{2}+\frac{1}{m_{2}} \sum_{i=m_{1}+1}^{m_{1}+m_{2}}\right\| \sum_{j=1}^{n} \mathscr{B}_{\xi} b_{j}(\boldsymbol{\xi}) u_{j}-u_{j}-b_{j}(\boldsymbol{\xi}) g_{j} \|_{j}^{2}} \underbrace{}_{\mathbf{x}_{h}(\boldsymbol{\xi})=\sum_{j=1}^{n} b_{j}\left(\boldsymbol{\xi} \boldsymbol{\xi} \mathbf{x}_{j}\right.}
\end{gathered}
$$

From least-squares collocation IgA to IgANets

$$
\begin{gathered}
\min _{u_{h}} \frac{1}{m_{1}} \sum_{i=1}^{m_{1}}\left\|\mathscr{L}_{\mathbf{x}} u_{h}\left(\mathbf{x}_{i}\right)-f\left(\mathbf{x}_{i}\right)\right\|^{2}+\frac{1}{m_{2}} \sum_{i=m_{1}+1}^{m_{1}+m_{2}}\left\|\mathscr{B}_{\mathbf{x}} u_{h}\left(\mathbf{x}_{i}\right)-g\left(\mathbf{x}_{i}\right)\right\|^{2} \\
\text { solution }\left[\left\{u_{j}\right\}\right\}_{j} \frac{1}{m_{1}} \sum_{i=1}^{m_{1}}\left\|\sum_{j=1}^{n} \mathscr{L}_{\xi} b_{j}\left(\boldsymbol{\xi}_{i}\right) u_{j}-b_{j}(\boldsymbol{\xi} \mid) f_{j}\right\|^{2}+\frac{1}{m_{2}} \sum_{i=m_{1}+1}^{m_{1}+m_{2}} \| \sum_{j=1}^{n} \mathscr{B}_{\xi} b_{j}\left(\boldsymbol{\xi}_{i}\right) u_{j}-b_{j}\left(\boldsymbol{\xi}_{i} \mid g_{j} \|^{2}\right. \\
\text { bc cond. } \\
\mathbf{x}_{h}(\boldsymbol{\xi})=\sum_{j=1}^{n} b_{j}(\boldsymbol{\xi}) \sqrt{\mathbf{x}_{j}} \\
\text { geometry }
\end{gathered}
$$

From least-squares collocation IgA to deep operator learning

$$
\min _{\left\{u_{j}\right\}_{j}} \frac{1}{m_{1}} \sum_{i=1}^{m_{1}}\left\|\sum_{j=1}^{n} \mathscr{L}_{\xi} b_{j}\left(\boldsymbol{\xi}_{i}\right) u_{j}-b_{j}\left(\boldsymbol{\xi}_{i}\right) f_{j}\right\|^{2}+\frac{1}{m_{2}} \sum_{i=m_{1}+1}^{m_{1}+m_{2}}\left\|\sum_{j=1}^{n} \mathscr{B}_{\xi} b_{j}\left(\boldsymbol{\xi}_{i}\right) u_{j}-b_{j}\left(\boldsymbol{\xi}_{i}\right) g_{j}\right\|^{2}
$$

PDE loss function boundary loss function

From least-squares collocation IgA to deep operator learning

$$
\min _{\left\{u_{j}\right\}_{j}} \frac{1}{m_{1}} \sum_{i=1}^{m_{1}}\left\|\sum_{j=1}^{n} \mathscr{L}_{\xi} b_{j}\left(\boldsymbol{\xi}_{i}\right) u_{j}-b_{j}\left(\boldsymbol{\xi}_{i}\right) f_{j}\right\|^{2}+\frac{1}{m_{2}} \sum_{i=m_{1}+1}^{m_{1}+m_{2}}\left\|\sum_{j=1}^{n} \mathscr{B}_{\xi} b_{j}\left(\boldsymbol{\xi}_{i}\right) u_{j}-b_{j}\left(\boldsymbol{\xi}_{i}\right) g_{j}\right\|^{2}
$$

PDE loss function boundary loss function

From least-squares collocation IgA to deep operator learning

$$
\min _{\left\{u_{j}\right\}_{j}} \frac{1}{m_{1}} \sum_{i=1}^{m_{1}}\left\|\sum_{j=1}^{n} \mathscr{L}_{\xi} b_{j}\left(\boldsymbol{\xi}_{i}\right) u_{j}-b_{j}\left(\boldsymbol{\xi}_{i}\right) f_{j}\right\|^{2}+\frac{1}{m_{2}} \sum_{i=m_{1}+1}^{m_{1}+m_{2}}\left\|\sum_{j=1}^{n} \mathscr{B}_{\xi} b_{j}\left(\boldsymbol{\xi}_{i}\right) u_{j}-b_{j}\left(\boldsymbol{\xi}_{i}\right) g_{j}\right\|^{2}
$$

PDE loss function boundary loss function

How is this related to PINNs, DeepONets, etc.?

From least-squares collocation IgA to deep operator learning

$$
\min _{\left\{u_{j}\right\}_{j}} \frac{1}{m_{1}} \sum_{i=1}^{m_{1}}\left\|\sum_{j=1}^{n} \mathscr{L}_{\xi} b_{j}\left(\boldsymbol{\xi}_{i}\right) u_{j}-b_{j}\left(\boldsymbol{\xi}_{i}\right) f_{j}\right\|^{2}+\frac{1}{m_{2}} \sum_{i=m_{1}+1}^{m_{1}+m_{2}}\left\|\sum_{j=1}^{n} \mathscr{B}_{\xi} b_{j}\left(\boldsymbol{\xi}_{i}\right) u_{j}-b_{j}\left(\boldsymbol{\xi}_{i}\right) g_{j}\right\|^{2}
$$

PDE loss function
boundary loss function

How is this related to PINNs, DeepONets, etc.?
Can be seen as deep operator network with given B-spline/NURBS basis!

From least-squares collocation IgA to deep operator learning

$$
\min _{\left\{u_{j}\right\}_{j}} \frac{1}{m_{1}} \sum_{i=1}^{m_{1}}\left\|\sum_{j=1}^{n} \mathscr{L}_{\xi} b_{j}\left(\boldsymbol{\xi}_{i}\right) u_{j}-b_{j}\left(\boldsymbol{\xi}_{i}\right) f_{j}\right\|^{2}+\frac{1}{m_{2}} \sum_{i=m_{1}+1}^{m_{1}+m_{2}}\left\|\sum_{j=1}^{n} \mathscr{B}_{\xi} b_{j}\left(\boldsymbol{\xi}_{i}\right) u_{j}-b_{j}\left(\boldsymbol{\xi}_{i}\right) g_{j}\right\|^{2}
$$

PDE loss function
boundary loss function

How is this related to PINNs, DeepONets, etc.?

Can be seen as deep operator network with given B-spline/NURBS basis!

Do we need to separate training from inference?

From least-squares collocation IgA to deep operator learning

$$
\min _{\left\{u_{j}\right\}_{j}} \frac{1}{m_{1}} \sum_{i=1}^{m_{1}}\left\|\sum_{j=1}^{n} \mathscr{L}_{\xi} b_{j}\left(\boldsymbol{\xi}_{i}\right) u_{j}-b_{j}\left(\boldsymbol{\xi}_{i}\right) f_{j}\right\|^{2}+\frac{1}{m_{2}} \sum_{i=m_{1}+1}^{m_{1}+m_{2}}\left\|\sum_{j=1}^{n} \mathscr{B}_{\xi} b_{j}\left(\boldsymbol{\xi}_{i}\right) u_{j}-b_{j}\left(\boldsymbol{\xi}_{i}\right) g_{j}\right\|^{2}
$$

PDE loss function boundary loss function

How is this related to PINNs, DeepONets, etc.?
Can be seen as deep operator network with given B-spline/NURBS basis!

Do we need to separate training from inference?
No, the network learns on the fly.
But we can also pre-train it.

IgANet

GitHub.com/IgANets

- $\mathrm{C}++17$ (soon open-source) library implemented atop LibTorch 2.x (C++ API of PyTorch)
- Dimension-independent B-splines and NURBS and a customisable IgANets deep learning framework
- Distributed computing on CPUs and GPUs (NVIDIA \& AMD, Google TPUs WIP)
- Coupled with G+Smo (Geometry plus Simulation Modules) as IgA reference library and as toolkit with surface and volume reparameterization techniques

Hyper-parameter tuning (loss function tolerance 10^{-12})

Hyper-parameter tuning (loss function tolerance 10^{-12})

Hyper-parameter tuning (loss function tolerance 10^{-12})

Cost analysis

$$
\operatorname{loss}_{\mathrm{PDE}}=\frac{1}{m_{1}} \sum_{i=1}^{m_{1}}\left|\Delta\left[u_{h} \circ \mathbf{x}_{h}\left(\boldsymbol{\xi}_{i}\right)\right]-f_{h} \circ \mathbf{x}_{h}\left(\boldsymbol{\xi}_{i}\right)\right|^{2}
$$

Differential operators in the loss function are computed efficiently in the 'traditional' IgA manner by differentiating the B-spline basis functions (no need to differentiate the network as in PINNs!)

```
bspline.ilaplace(Geo, Cpts);
```

Derivatives of the loss function w.r.t. to the weights and biases are computed via back propagation

```
nn.zero_grad(); loss = L(nn.forward(Geo, Cpts),...); loss.backward();
```


Cost analysis

3. Isogeometric
Analysis and IgANets

1. Creation of VReps from BReps
2. Reparameterization techniques
3. Interactive Design-through-Analysis

Interactive design-through-analysis

Vision: Enable CAD and CAE experts to collaborate in a distributed DTA framework

IgANet
https://visualization.surf.nl/iganet

Summary

Seamless in-paradigm integration of deep learning techniques into the $\lg A$ framework

Concept of an interactive Design-through-Analysis pipeline for CAD and CAE experts

Software toolbox for automatic (re-)parameterization to motivate CAD expert use VReps

Acknowledgments

Ye Ji, Hugo Verhelst, Mengyun Wang, Deepesh Toshniwal, Frank van Ruiten (TU Delft), Jochen Hinz, Merle Backmeyer (ETH Zurich), Casper van Leeuwen, Paul Melis, Yue Zhao (SURF), Jaewook Lee (TU Vienna), Veronika Trávníková (RWTH Aachen)

H2020: MOTOR (GA No. 678727), SURF: EINF-3689, EINF-7907, ETP-0001

