

A Comparative Study of Conforming and Nonconforming High-Resolution Finite Element Schemes

Matthias Möller Institute of Applied Mathematics (LS3) TU Dortmund, Germany

European Seminar on Computing Pilsen, Czech Republic June 25, 2012

Family of AFC schemes

Family of AFC schemes

Kuzmin et al.

Family of AFC schemes

Kuzmin et al.

Review of design principles

Jameson's Local Extremum Diminishing criterion

IF
$$m_i \dot{u}_i = \sum_{j \neq i} \sigma_{ij} (u_j - u_i)$$

positive not negative

THEN local solution maxima/minima do not increase/decrease

Review of design principles

Jameson's Local Extremum Diminishing criterion

$$\begin{array}{ll} \mathsf{IF} & m_i \dot{u}_i = \sum_{j \neq i} \sigma_{ij} (u_j - u_i) \\ \uparrow & \uparrow \\ \mathsf{positive} & \mathsf{not} \ \mathsf{negative} \end{array}$$

THEN local solution maxima/minima do not increase/decrease

Semi-discrete high-resolution scheme

$$m_{i}\dot{u}_{i} = \sum_{j \neq i} (k_{ij} + d_{ij})(u_{j} - u_{i}) + \delta_{i}u_{i} + \sum_{j \neq i} \alpha_{ij}f_{ij}$$
not negative by
construction of
diffusion coefficient
$$construction f$$
flux limiter

Review of design principles

Jameson's Local Extremum Diminishing criterion

F
$$m_i \dot{u}_i = \sum_{j \neq i} \sigma_{ij} (u_j - u_i)$$

positive not negative

THEN local solution maxima/minima do not increase/decrease

Semi-discrete high-resolution scheme

$$m_{i}\dot{u}_{i} = \sum_{j \neq i} (k_{ij} + d_{ij})(u_{j} - u_{i}) + \delta_{i}u_{i} + \sum_{j \neq i} \alpha_{ij}f_{ij}$$
not negative by
construction of
diffusion coefficient
$$controlled by$$
flux limiter

Edge-based assembly of operators/vectors is feasible and efficient!

Finite Elements

Bilinear Q₁ FE

nodal values at cell vertices

Rotated bilinear $\sim Q_1$ FE

- nodal values at cell midpoints
- integral mean-values at edges

Uniform I28xI28 grid of unit square with 5% stochastic disturbance

		\triangle (A)	Mc	ML	NEQ	NA
	Qı	8	\checkmark	\checkmark	16,641	82,680
mean value	~Q _I par	6	\checkmark	\checkmark	33,024	140,483
	~Q _I np	6	\checkmark	\checkmark	33,024	140,478
point value	~Q _I par	6	-7.2E-07	(\checkmark)	33,024	138,204
	~Q _I np	6	-7.2E-07	(\checkmark)	33,024	138,576

Uniform I28xI28 grid of unit square with 5% stochastic disturbance

Solid body rotation

Pure convection problem

$$\dot{u} + \nabla \cdot (\mathbf{v}u) = 0$$
 in $\Omega = (0, 1)^2$
 $u = 0$ on Γ_{inflow}

- Velocity field $\mathbf{v}(x, y) = (0.5 - y, x - 0.5)$
- Grid size

$$h = 1/2^l, l = 5, 6, \dots$$

- Stochastic grid disturbance $\delta \in \{0\%, 1\%, 5\%\}$
- Time step in Crank-Nicolson $\Delta t = 1.28 \cdot h$
- Initial = exact solution at
 - $t = 2\pi k, \ k \in \mathbb{N}$

SBR: L₂-error (0% mesh disturbance)

SBR: L₂-error (5% mesh disturbance)

Montag, 25. Juni 12

Rotation of a Gaussian hill

Velocity field, diffusion coefficient $\mathbf{v}(x,y) = (-y,x), \quad \epsilon = 0.001$

Analytical solution

$$u(x, y, t) = \frac{1}{4\pi\epsilon t} e^{-\frac{r^2}{4\epsilon t}}$$

$$r^2 = (x - \hat{x})^2 + (y - \hat{y})^2$$

- Position of the peak
 - $\hat{x}(t) = -0.5 \sin t$ $\hat{y}(t) = 0.5 \cos(t)$
- Other parameters as before

RGH: L₂-error (0% mesh disturbance)

RGH: dispersion-error (0% mesh disturbance)

RGH: L₂-error (5% mesh disturbance)

Montag, 25. Juni 12

RGH: dispersion-error (5% mesh disturbance)

Montag, 25. Juni 12

Taxonomy of finite elements

good	accuracy	good
small	numerical diffusion	small
smaller	#DOFs, #edges	larger
irregular	sparsity pattern	regular

Can nonconforming finite elements help to improve performance on many-core hardware ?

NVIDIA Kepler GKII0 Die Shot (taken from: <u>www.gpgpu.org</u>)

Montag, 25. Juni 12

Example: edge-based flux-assembly with Q_1 FE

Example: edge-based flux assembly with Q_1 FE

Example: edge-based flux assembly with $\sim Q_1$ FE

Nonconforming $\sim Q_1$ finite elements

- can be used within the algebraic flux correction framework
- are comparable to conforming FEs (accuracy/numerical diffusion)
- increase number of DOFs as compared to conforming Q₁ FEs
- lead to system matrices with regular structure favorable for HPC

Future plans

- Apply nonconforming AFC schemes to systems of equations
- Exploit benefits of nonconforming FEs for many-core architectures: speed up parallel (edge-based) assembly loops, implement more efficient matrix structures (ELLPACK), reduce communication costs in parallelized code

AFC schemes

D. Kuzmin (University of Erlangen-Nuremberg)

CUDA/GPU programming

D. Göddeke, D. Ribbrock, M. Geveler (TU Dortmund)

Featflow2

M. Köster, P. Zajac (TU Dortmund)

Source code freely available at:

http://www.featflow.de/en/software/featflow2.html