

# High-resolution finite element schemes for (magneto)hydrodynamics

Dmitri Kuzmin<sup>1</sup> Matthias Möller<sup>2</sup>

 $^1{\rm Chair}$  of Applied Mathematics III, University Erlangen-Nuremberg, Germany

<sup>2</sup>Institute of Applied Mathematics (LS3), TU Dortmund, Germany

Thanks to John N. Shadid, Sandia National Laboratories

#### 1 High-resolution scheme

- Finite element approximation
- Flux-correction algorithm

#### 2 Applications

- Idealized Z-pinch implosion model
- Ideal MHD equations
- **3** Efficient implementation
  - Blocking and parallelization

$$\frac{\partial U}{\partial t} + \nabla \cdot \mathbf{F}(U) = 0$$

#### Weak formulation

 $\int_{\Omega} W \frac{\partial U}{\partial t} - \nabla W \cdot \mathbf{F}(U) \, \mathrm{d}\mathbf{x} + \int_{\Gamma} W \, \mathbf{n} \cdot \mathbf{F}(U) \, \mathrm{d}s = 0, \quad \forall W \in \mathcal{W}$ 

#### Group representation<sup>1</sup>

 $U(\mathbf{x},t) \approx \sum_{j} \varphi_{j}(\mathbf{x}) U_{j}(t), \qquad \mathbf{F}(U) \approx \sum_{j} \varphi_{j}(\mathbf{x}) \mathbf{F}_{j}(t), \quad \mathbf{F}_{j} = \mathbf{F}(U_{j})$ 

#### Semi-discrete high-order scheme

$$\sum_{j} m_{ij} \frac{\mathrm{d}U_{j}}{\mathrm{d}t} - \sum_{j} \mathbf{c}_{ji} \cdot \mathbf{F}_{j} + \sum_{j} \mathbf{s}_{ij} \cdot \mathbf{F}_{j} = 0$$

$$m_{ij} = \int_{\Omega} \varphi_i \varphi_j \, \mathrm{d}\mathbf{x}, \qquad \mathbf{c}_{ji} = \int_{\Omega} \nabla \varphi_i \varphi_j \, \mathrm{d}\mathbf{x}, \qquad \mathbf{s}_{ij} = \int_{\Gamma} \varphi_i \varphi_j \mathbf{n} \, \mathrm{d}s$$

#### <sup>1</sup>C.A.J. Fletcher, CMAME 1983, 37(2), pp. 225–244

$$\frac{\partial U}{\partial t} + \nabla \cdot \mathbf{F}(U) = 0$$

#### Weak formulation

 $\int_{\Omega} W \frac{\partial U}{\partial t} - \nabla W \cdot \mathbf{F}(U) \, \mathrm{d}\mathbf{x} + \int_{\Gamma} W \, \mathbf{n} \cdot \mathbf{F}(U) \, \mathrm{d}s = 0, \quad \forall W \in \mathcal{W}$ 

#### Group representation<sup>1</sup>

 $U(\mathbf{x},t) \approx \sum_{j} \varphi_{j}(\mathbf{x}) U_{j}(t), \qquad \mathbf{F}(U) \approx \sum_{j} \varphi_{j}(\mathbf{x}) \mathbf{F}_{j}(t), \quad \mathbf{F}_{j} = \mathbf{F}(U_{j})$ 

#### Semi-discrete high-order scheme

$$\sum_j m_{ij} rac{\mathrm{d} U_j}{\mathrm{d} t} - \sum_j \mathbf{c}_{ji} \cdot \mathbf{F}_j + \sum_j \mathbf{s}_{ij} \cdot \mathbf{F}_j = 0$$

$$m_{ij} = \int_{\Omega} \varphi_i \varphi_j \, \mathrm{d}\mathbf{x}, \qquad \mathbf{c}_{ji} = \int_{\Omega} \nabla \varphi_i \varphi_j \, \mathrm{d}\mathbf{x}, \qquad \mathbf{s}_{ij} = \int_{\Gamma} \varphi_i \varphi_j \mathbf{n} \, \mathrm{d}s$$

#### <sup>1</sup>C.A.J. Fletcher, CMAME 1983, 37(2), pp. 225-244

Finite element approximation, cont'd

$$\frac{\partial U}{\partial t} + \nabla \cdot \mathbf{F}(U) = 0$$

Semi-discrete high-order scheme<sup>2</sup>

$$\sum_{j} m_{ij} \frac{\mathrm{d}U_{j}}{\mathrm{d}t} - \sum_{j} \mathbf{c}_{ji} \cdot \mathbf{F}_{j} = 0, \qquad -\mathbf{c}_{ii} = \sum_{j \neq i} \mathbf{c}_{ij}$$

<sup>2</sup>D. Kuzmin, M. M, S. Turek, IJNMF 2003, 42(3), pp. 265-295

Finite element approximation, cont'd

$$\frac{\partial U}{\partial t} + \nabla \cdot \mathbf{F}(U) = 0$$

Semi-discrete high-order scheme<sup>2</sup>

$$\sum_{j} m_{ij} \frac{\mathrm{d}U_{j}}{\mathrm{d}t} + \sum_{j \neq i} G_{ij} = 0 \qquad \qquad G_{ij} = \mathbf{c}_{ij} \cdot \mathbf{F}_{i} - \mathbf{c}_{ji} \cdot \mathbf{F}_{j}$$

Efficient edge-based assembly of residual/right-hand side vector

<sup>&</sup>lt;sup>2</sup>D. Kuzmin, M. M, S. Turek, IJNMF 2003, 42(3), pp. 265–295

Finite element approximation, cont'd

$$\frac{\partial U}{\partial t} + \nabla \cdot \mathbf{F}(U) = 0$$

Semi-discrete high-order scheme<sup>2</sup>

$$\sum_{j} m_{ij} \frac{\mathrm{d}U_{j}}{\mathrm{d}t} + \sum_{j \neq i} G_{ij} = 0 \qquad \qquad G_{ij} = \mathbf{c}_{ij} \cdot \mathbf{F}_{i} - \mathbf{c}_{ji} \cdot \mathbf{F}_{j}$$

Efficient edge-based assembly of residual/right-hand side vector

#### Semi-discrete low-order scheme

$$\frac{m_i \frac{\mathrm{d}U_i}{\mathrm{d}t} + \sum_{j \neq i} G_{ij} + D_{ij}(U_j - U_i) = 0}{m_i} = \sum_j m_{ij}$$

Flexibility in the choice of  $D_{ij}$  (Roe-/Rusanov-type)

Low-order scheme must satisfy physical constraints

#### <sup>2</sup>D. Kuzmin, M. M, S. Turek, IJNMF 2003, 42(3), pp. 265-295

$$\frac{\partial U}{\partial t} + \nabla \cdot \mathbf{F}(U) = 0$$

• Conservative flux decomposition  $m_i(U_i^H - U_i^L) = \sum_{j \neq i} \dot{F}_{ij}$  $\dot{F}_{ij} = m_{ij} \left( \frac{\mathrm{d}U_i}{\mathrm{d}U_i} - \frac{\mathrm{d}U_j}{\mathrm{d}U_j} \right) + D_{ij} \left( U_i - U_j \right) \qquad \dot{F}_{ij} = -\dot{F}_{ij}$ 

$$\Gamma_{ij} = m_{ij} \begin{pmatrix} dt & dt \end{pmatrix} + D_{ij} \langle C_i & C_j \rangle, \quad \Gamma_{ji} = \Gamma_{ij}$$

• Predictor: Compute the low-order solution  $U^L$  and  $\dot{U}^L \approx \frac{\mathrm{d}U}{\mathrm{d}t}$ and linearize the raw antidiffusive flux  $F_{ji}^L = -F_{ij}^L$ 

$$F_{ij}^L = \Delta t \left[ m_{ij} (\dot{U}_i^L - \dot{U}_j^L) + D_{ij} (U_i^L - U_j^L) \right]$$

**Corrector:** Apply the limited *conservative* antidiffusive fluxes

$$m_i U_i = m_i U_i^L + \sum_{j \neq i} \alpha_{ij} F_{ij}^L \qquad \alpha_{ji} = \alpha_{ij} \in [0, 1]$$

#### <sup>3</sup>D. Kuzmin, JCP 2009, 228(7), pp. 2517-2534

 $\frac{\partial U}{\partial t} + \nabla \cdot \mathbf{F}(U) = 0$ 

Zalesak's flux limiter<sup>4</sup> is applicable to scalar variables only

$$f_{ij}^L, u_i^L \longrightarrow \text{FCT} \longrightarrow u_i^{\min} \le u_i^L + \frac{1}{m_i} \sum_{j \ne i} \alpha_{ij} f_{ij}^L \le u_i^{\max}$$

Apply limiter to a set of control variables one after the other<sup>5</sup>



Nodal transformation

$$\bullet \ f^{\rho}_{ij} = \mathcal{T}^{\rho}_i F^L_{ij}$$

$$\bullet f_{ij}^p = \mathcal{T}_i^p(\alpha_{ij}^\rho F_{ij}^L)$$

$$\bullet f_{ij}^v = \mathcal{T}_i^v (\alpha_{ij}^p \alpha_{ij}^\rho F_{ij}^L)$$

Flux correction:  $\alpha_{ij}F_{ij}^L$ 

- <sup>4</sup>S. Zalesak, JCP 1979, 31(3), pp. 335–362
- <sup>5</sup>D. Kuzmin, M. M, J.N. Shadid, M. Shashkov, JCP 2010, 229(23), pp. 8766-8779

 $\frac{\partial U}{\partial t} + \nabla \cdot \mathbf{F}(U) = 0$ 

Zalesak's flux limiter<sup>4</sup> is applicable to scalar variables only

$$f_{ij}^L, u_i^L \longrightarrow \text{FCT} \longrightarrow u_i^{\min} \le u_i^L + \frac{1}{m_i} \sum_{j \ne i} \alpha_{ij} f_{ij}^L \le u_i^{\max}$$

Apply limiter to a set of control variables one after the other<sup>5</sup>



Nodal transformation

$$\bullet \ f^{\rho}_{ij} = \mathcal{T}^{\rho}_i F^L_{ij}$$

$$\bullet f_{ij}^p = \mathcal{T}_i^p(\alpha_{ij}^\rho F_{ij}^L)$$

$$\bullet f_{ij}^v = \mathcal{T}_i^v (\alpha_{ij}^p \alpha_{ij}^\rho F_{ij}^L)$$

Flux correction:  $\alpha_{ij}F_{ij}^L$ 

- <sup>4</sup>S. Zalesak, JCP 1979, 31(3), pp. 335–362
- <sup>5</sup>D. Kuzmin, M. M, J.N. Shadid, M. Shashkov, JCP 2010, 229(23), pp. 8766-8779

### Benchmark: Sod's shock tube problem

- Transient compressible Euler equations in 2D
- Rusanov-type dissipation
- FCT:  $\alpha_{ij} = \alpha_{ij}^p \alpha_{ij}^\rho$
- $10n \times n$  grid,  $Q_1$  FEs



#### numerical convergence-order

$$\kappa_u = \log \frac{\|u_{2h} - u_{4h}\|_1}{\|u_h - u_{2h}\|_1} / \log 2$$

|                | Crank Nicolson time stepping |            |              |            |  |  |  |  |
|----------------|------------------------------|------------|--------------|------------|--|--|--|--|
|                | FC                           | T          | Low-order    |            |  |  |  |  |
| $n_{\rm fine}$ | $\kappa_ ho$                 | $\kappa_p$ | $\kappa_ ho$ | $\kappa_p$ |  |  |  |  |
| 20             | 0.624                        | 1.027      | 0.193        | 0.623      |  |  |  |  |
| 40             | 0.970                        | 1.003      | 0.421        | 0.671      |  |  |  |  |
| 80             | 1.079                        | 1.005      | 0.575        | 0.701      |  |  |  |  |
| 160            | 1.073                        | 1.005      | 0.624        | 0.730      |  |  |  |  |

|                | Backward Euler time stepping |            |              |            |  |  |  |  |
|----------------|------------------------------|------------|--------------|------------|--|--|--|--|
|                | FC                           | CT         | Low-order    |            |  |  |  |  |
| $n_{\rm fine}$ | $\kappa_ ho$                 | $\kappa_p$ | $\kappa_ ho$ | $\kappa_p$ |  |  |  |  |
| 20             | 0.671                        | 0.982      | 0.190        | 0.619      |  |  |  |  |
| 40             | 0.980                        | 0.950      | 0.416        | 0.669      |  |  |  |  |
| 80             | 0.977                        | 0.947      | 0.575        | 0.701      |  |  |  |  |
| 160            | 0.981                        | 0.945      | 0.624        | 0.730      |  |  |  |  |

Omitting the group FE representation in the boundary integral may lead to boundary errors!





### Benchmark: Sod's shock tube problem



Coarse mesh with contour plot of density variable at time t = 0.231

|           | Crank Nicolson time stepping |            |                |            | Backward Euler time stepping |            |                |            |
|-----------|------------------------------|------------|----------------|------------|------------------------------|------------|----------------|------------|
|           | FCT                          |            | Low-order      |            | FCT                          |            | Low-order      |            |
| #trias    | $\kappa_ ho$                 | $\kappa_p$ | $\kappa_{ ho}$ | $\kappa_p$ | $\kappa_ ho$                 | $\kappa_p$ | $\kappa_{ ho}$ | $\kappa_p$ |
| 18,176    | 0.925                        | 0.876      | 0.364          | 0.665      | 0.955                        | 0.841      | 0.357          | 0.662      |
| 72,704    | 0.874                        | 0.800      | 0.539          | 0.679      | 0.820                        | 0.732      | 0.536          | 0.679      |
| 290,816   | 0.806                        | 0.934      | 0.614          | 0.718      | 0.765                        | 0.875      | 0.616          | 0.719      |
| 1,163,264 | 0.948                        | 0.966      | 0.641          | 0.739      | 0.889                        | 0.905      | 0.642          | 0.740      |

Linearized FCT algorithm yields accurate and non-oscillatory solutions using  $P_1$  and  $Q_1$  finite elements on structured and unstructured meshes, respectively.

### Idealized Z-pinch implosion model<sup>6</sup>

Generalized Euler system coupled with scalar tracer equation

$$\frac{\partial}{\partial t} \begin{bmatrix} \rho \\ \rho \mathbf{v} \\ \rho E \\ \rho E \\ \rho \lambda \end{bmatrix} + \nabla \cdot \begin{bmatrix} \rho \mathbf{v} \\ \rho \mathbf{v} \otimes \mathbf{v} + p\mathcal{I} \\ \rho E \mathbf{v} + p \mathbf{v} \\ \rho \lambda \mathbf{v} \end{bmatrix} = \begin{bmatrix} 0 \\ \mathbf{f} \\ \mathbf{f} \cdot \mathbf{v} \\ 0 \end{bmatrix}$$

Equation of state

$$p = (\gamma - 1)\rho(E - 0.5|\mathbf{v}|^2)$$

Non-dimensional Lorentz force

$$\mathbf{f} = \left(\rho\lambda\right) \left(\frac{I(t)}{I_{\max}}\right)^2 \frac{\hat{\mathbf{e}}_r}{r_{\text{eff}}}, \quad 0 \le \lambda \le 1$$



<sup>6</sup>J.W. Banks, J.N. Shadid, IJNMF 2009, 61(7), pp. 725-751

### Coupled solution algorithm





















#### Idealized MHD equations

$$\frac{\partial}{\partial t} \begin{bmatrix} \rho \\ \rho \mathbf{v} \\ \mathbf{B} \\ \rho E \end{bmatrix} + \nabla \cdot \begin{bmatrix} \rho \mathbf{v} \\ \rho \mathbf{v} \otimes \mathbf{v} + p\mathcal{I} - \mathbf{B} \otimes \mathbf{B} \\ \mathbf{v} \otimes \mathbf{B} - \mathbf{B} \otimes \mathbf{v} \\ \rho E \mathbf{v} + p \mathbf{v} - (\mathbf{B} \cdot \mathbf{v}) \mathbf{B} \end{bmatrix} = 0$$

subject to  $\nabla \cdot \mathbf{B} = \mathbf{0}$ 

- Divergence involution in 1D:  $\partial_x B_x = 0 \Rightarrow B_x = const$
- Hyperbolic conservation laws for 7 variables:  $\rho$ ,  $\mathbf{v}$ ,  $B_y$ ,  $B_z$ ,  $\rho E$
- Roe matrix (for arbitrary  $\gamma$ ) by Cargo and Gallice<sup>7</sup>
- FCT limiter is applied to control variables  $\rho$ , p,  $B_y$  and  $B_z$

#### <sup>7</sup>P. Cargo, G. Gallice, JCP 1997, 136(2), pp.446-466

$$\begin{array}{l} \bullet \ \gamma = 1.4, \quad B_x = 0.75, \quad t_{\rm fin} = 0.1, \quad 800 \ {\rm grid \ points} \\ (\rho, {\bf v}, B_y, B_z, p)^T = \left\{ \begin{array}{ll} (1.0 \quad , 0.0, \quad 1.0, 0.0, 1.0)^T \quad {\rm if} \ x \leq 0.5 \\ (0.125, 0.0, -1.0, 0.0, 0.1)^T \quad {\rm if} \ x > 0.5 \end{array} \right. \end{array}$$









- 2D-Shock tube problem
- Roe-type dissipation
- FCT:  $\alpha_{ij} = \alpha_{ij}^p \alpha_{ij}^\rho$
- 290,816 triangles
- 2,310 time steps BE
- 800 edges per thread



Edge-based formulation leads to an efficient assembly of vectors/matrices

### Conclusions

Linearized flux correction algorithm

- ensures boundedness of physical quantities
- preserves symmetry on unstructured grids
- is applicable to 'challenging' applications
- admits an efficient edge-based assembly
- Future research
  - extension to multidimensional MHD equations
  - treatment of the  $\nabla \cdot \mathbf{B} = 0$  involution

### Conclusions

Linearized flux correction algorithm

- ensures boundedness of physical quantities
- preserves symmetry on unstructured grids
- is applicable to 'challenging' applications
- admits an efficient edge-based assembly
- Future research
  - extension to multidimensional MHD equations
  - treatment of the  $\nabla \cdot \mathbf{B} = 0$  involution

## Thank you for your attention!

### References

- C.A.J. Fletcher, The group finite element formulation. CMAME 1983, 37(2), pp. 225–244.
- D. Kuzmin, M. M, S. Turek, Multidimensional FEM-FCT schemes for arbitrary time-stepping. IJNMF 2003, 42(3), pp. 265-295.
- D. Kuzmin, Explicit and implicit FEM-FCT algorithms with flux linearization. JCP 2009, 228(7), pp. 2517–2534.
- I S.T. Zalesak, Fully multidimensional flux-corrected transport algorithms for fluids. JCP 1979, 31(3), pp. 335–362.
- D. Kuzmin, M. M, J.N. Shadid, M. Shashkov, Failsafe flux limiting and constrained data projections for equations of gas dynamics. JCP 2010, 229(23), pp. 8766–8779.
- J.W. Banks, J.N. Shadid, An Euler system source term that develops prototype Z-pinch implosions intended for the evaluation of shock-hydro methods. IJNMF 2009, 61(7), pp. 725–751.
- P. Cargo, G. Gallice, Roe matrices for ideal MHD and systematic construction of Roe matrices for systems of conservation laws. JCP 1997, 136(2), pp.446–466.

 $\frac{\partial u}{\partial t} + \nabla \cdot \mathbf{f}(u) = 0$ 



<sup>5</sup>S. Zalesak, JCP 1979, 31(3), pp. 335–362

 $\frac{\partial u}{\partial t} + \nabla \cdot \mathbf{f}(u) = 0$ 



<sup>5</sup>S. Zalesak, JCP 1979, 31(3), pp. 335–362

 $\frac{\partial u}{\partial t} + \nabla \cdot \mathbf{f}(u) = 0$ 



Compute nodal correction factors

 $R_i^+ = \min\{1, Q_i^+/P_i^+\}$  and  $R_i^- = \min\{1, Q_i^-/P_i^-\}$ 

<sup>5</sup>S. Zalesak, JCP 1979, 31(3), pp. 335–362

 $\frac{\partial u}{\partial t} + \nabla \cdot \mathbf{f}(u) = 0$ 



Compute nodal correction factors  $R_i^+ = \min\{1, Q_i^+/P_i^+\} \text{ and } R_i^- = \min\{1, Q_i^-/P_i^-\}$ 

• Limit antidiffusive flux for edge ij by

 $\alpha_{ij} = \begin{cases} \min\{R_i^+, R_j^-\} & \text{for positive fluxes} \\ \min\{R_i^-, R_j^+\} & \text{for negative fluxes} \end{cases}$ 

<sup>5</sup>S. Zalesak, JCP 1979, 31(3), pp. 335–362

Input: auxiliary solution  $u^L$  and antidiffusive fluxes  $f_{ij}^u$ , where  $f_{ij}^u \neq f_{ij}^u$ **1** Sums of positive/negative antidiffusive fluxes into node i $P_i^+ = \sum_{i \neq i} \max\{0, f_{ij}^u\}, \qquad P_i^- = \sum_{i \neq i} \min\{0, f_{ij}^u\}$ 2 Upper/lower bounds based on the local extrema of  $u^L$  $Q_{i}^{+} = m_{i}(u_{i}^{\max} - u_{i}^{L}), \qquad Q_{i}^{-} = m_{i}(u_{i}^{\min} - u_{i}^{L})$ **3** Correction factors  $\alpha_{ij}^u = \alpha_{ji}^u$  to satisfy the FCT constraints  $\alpha_{ij}^{u} = \min\{R_{ij}, R_{ji}\}, \quad R_{ij} = \begin{cases} \min\{1, Q_i^+ / P_i^+\} & \text{if } f_{ij}^u \ge 0\\ \min\{1, Q_i^- / P_i^-\} & \text{if } f_{ij}^u < 0 \end{cases}$ 

### Node-based transformation of control variables

Conservative variables: density, momentum, total energy

$$U_i = \left[\rho_i, (\rho \mathbf{v})_i, (\rho E)_i\right], \qquad F_{ij} = \left[f_{ij}^{\rho}, \mathbf{f}_{ij}^{\rho v}, f_{ij}^{\rho E}\right], \qquad F_{ji} = -F_{ij}$$

Primitive variables V = TU: density, velocity, pressure

$$V_i = \left[\rho_i, \mathbf{v}_i, p_i\right], \qquad \mathbf{v}_i = \frac{(\rho \mathbf{v})_i}{\rho_i}, \qquad p_i = (\gamma - 1) \left[ (\rho E)_i - \frac{|(\rho \mathbf{v})_i|^2}{2\rho_i} \right]$$

$$G_{ij} = \left[f_{ij}^{\rho}, \mathbf{f}_{ij}^{v}, f_{ij}^{p}\right] = T(U_i)F_{ij}, \qquad T(U_j)F_{ji} = G_{ji} \neq -G_{ij}$$

Raw antidiffusive fluxes for the velocity and pressure

$$\mathbf{f}_{ij}^{\upsilon} = \frac{\mathbf{f}_{ij}^{\rho\upsilon} - \mathbf{v}_i f_{ij}^{\rho}}{\rho_i}, \qquad f_{ij}^p = (\gamma - 1) \left[ \frac{|\mathbf{v}_i|^2}{2} f_{ij}^{\rho} - \mathbf{v}_i \cdot \mathbf{f}_{ij}^{\rho\upsilon} + f_{ij}^{\rho E} \right]$$