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Motivation
FDM, FVM, FEM, BEM, IGA, ...

 sound mathematical foundation
 established engineering workflows
 no cost amortization over multiple

runs, no real-time capability

vs.

PINNs, DeepONets, FourierNets, ...

 fast evaluation (costly training!)
 inclusion of (measurement) data
 lack of convergence theory
 lack of general acceptance

Common misconceptions
• “Method a is/is not as accurate as method b”
• “Method a is x-times faster/slower than method b”

Better questions to ask
• What are the specific strengths/weaknesses of the different approaches?

• How can we combine the strengths of both classes of methods?
• What is the envisaged purpose of the new approach?
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Design-through-Analysis — IGA’s ultimate goal from day one on

Vision: fast interactive qualitative analysis and accurate quantitative analysis within the
same computational framework with seamless switching between both approaches

Photo: Siemens – Simulation for Design Engineers
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Physics-informed machine learning

PINN (Raissi et al. 2018): learns the (initial-)boundary-value problem

 easy to implement for ‘any‘ PDE
 combined un-/supervised learning
 poor extrapolation/generalization
 collocation-based approach requires

re-evaluation of NN at every point
 rudimentary convergence theory

DeepONet (Lu et al. 2019): learns the differential operator

Gθ(u)(y) =
q∑

k=1
bk(u(x1), u(x2), . . . , u(xm))︸ ︷︷ ︸

branch

tk(y)︸ ︷︷ ︸
trunk

Don’t we know a good basis?
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B-spline basis functions

Cox de Boor recursion formula

knot vector Ξ = [0, 1, 2, 3, 4]

b0
ℓ (ξ) =

{
1 if ξℓ ≤ ξ < ξℓ+1
0 otherwise

bp
ℓ (ξ) = ξ − ξℓ

ξℓ+p − ξℓ
bp−1

ℓ (ξ)

+ ξℓ+p+1 − ξ

ξℓ+p+1 − ξℓ+1
bp−1

ℓ+1 (ξ)

Many good properties: compact support [ξℓ, ξℓ+p+1), positive function values over
support interval, derivatives of B-splines are combinations of lower-order B-splines, ...
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Isogeometric Analysis
Paradigm: represent ‘everything’ in terms of tensor products of B-spline basis functions

Bi(ξ, η) := bp
ℓ (ξ) · bq

k(η), i := (k − 1) · nℓ + ℓ, 1 ≤ ℓ ≤ nℓ, 1 ≤ k ≤ nk,

2.2. A short introduction on NURBS functions

A knot vector N ¼ n1; n2; . . . ; nnþpþ1
! "

is defined as a sequence of
knot value ni 2; i ¼ 1; . . . ;nþ p. An open knot, i.e, the first and the
last knots are repeated p + 1 times, is used. A B-spline basis
function forms C1 continuous inside a knot span and Cp#1 contin-
uous at a single knot. The B-spline basis functions are constructed
by the following recursion formula

Ni;pðnÞ ¼
n# ni

niþp # ni
Ni;p#1ðnÞ þ

niþpþ1 # n
niþpþ1 # niþ1

Niþ1;p#1ðnÞ

with p > 0 ð14Þ

with p = 0,

Ni;0ðnÞ ¼
1 if ni 6 n < niþ1

0 otherwise

#
ð15Þ

Two-dimensional B-spline basis functions are defined by the
tensor product of basis functions in two parametric dimensions n
and g with two knot vectors N ¼ n1; n2 . . . ; nnþpþ1

$ %
and

H ¼ g1;g2 . . . ;gmþqþ1

n o
as

NAðn;gÞ ¼ Ni;pðnÞMj;qðgÞ ð16Þ

Fig. 1 illustrates the set of one-dimensional and two-dimen-
sional B-spline basis functions.

To model exactly curved geometries (e.g. circles, cylinders,
spheres, etc.), each control point A has additional value called an
individual weight fA. We denote Non-uniform Rational B-splines
(NURBS) functions which are expressed as

RA n;gð Þ ¼ NAfAPm&n
A NA n;gð ÞfA

ð17Þ

It is evident that the B-spline function is obtained when the
individual weight of the control points is constant.

2.3. Extended isogeometric finite elements

The idea of XFEM is to introduce physical functions with a priori
knowledge of the problem field to the approximation [14]. The
basic difference between XFEM and FEM is that the former involves
the solution of the additional parameters blended to the approxi-
mation by the partition of unity. Similar to the enrichment
functions used in XFEM, the XIGA velocity field of the cracked
solids can be expressed as

_uhðxÞ ¼
X

I2S
NI xð Þ _qI þ

X

J2Sc

NJ xð Þ H xð Þ # H xJ
& '& '

_aJ

þ
X

K2St

NK xð Þ
X4

a¼1

Fa xð Þ # Fa xKð Þð Þ _ba
K ð18Þ

Fig. 1. 1D and 2D B-spline basis functions.

Fig. 2. Illustration of enriched control points for a quadratic NURBS net.

H. Nguyen-Xuan et al. / Theoretical and Applied Fracture Mechanics 72 (2014) 13–27 15

bp
ℓ (ξ) bq

k(η)

Bi(ξ, η)

Many more good properties: partition of unity
n∑

i=1
Bi(ξ, η) ≡ 1, Cp−1 continuity, ...

6 / 21



Isogeometric Analysis
Paradigm: represent ‘everything’ in terms of tensor products of B-spline basis functions

Bi(ξ, η) := bp
ℓ (ξ) · bq

k(η), i := (k − 1) · nℓ + ℓ, 1 ≤ ℓ ≤ nℓ, 1 ≤ k ≤ nk,

2.2. A short introduction on NURBS functions

A knot vector N ¼ n1; n2; . . . ; nnþpþ1
! "

is defined as a sequence of
knot value ni 2; i ¼ 1; . . . ;nþ p. An open knot, i.e, the first and the
last knots are repeated p + 1 times, is used. A B-spline basis
function forms C1 continuous inside a knot span and Cp#1 contin-
uous at a single knot. The B-spline basis functions are constructed
by the following recursion formula

Ni;pðnÞ ¼
n# ni

niþp # ni
Ni;p#1ðnÞ þ

niþpþ1 # n
niþpþ1 # niþ1

Niþ1;p#1ðnÞ

with p > 0 ð14Þ

with p = 0,

Ni;0ðnÞ ¼
1 if ni 6 n < niþ1

0 otherwise

#
ð15Þ

Two-dimensional B-spline basis functions are defined by the
tensor product of basis functions in two parametric dimensions n
and g with two knot vectors N ¼ n1; n2 . . . ; nnþpþ1

$ %
and

H ¼ g1;g2 . . . ;gmþqþ1

n o
as

NAðn;gÞ ¼ Ni;pðnÞMj;qðgÞ ð16Þ

Fig. 1 illustrates the set of one-dimensional and two-dimen-
sional B-spline basis functions.

To model exactly curved geometries (e.g. circles, cylinders,
spheres, etc.), each control point A has additional value called an
individual weight fA. We denote Non-uniform Rational B-splines
(NURBS) functions which are expressed as

RA n;gð Þ ¼ NAfAPm&n
A NA n;gð ÞfA

ð17Þ

It is evident that the B-spline function is obtained when the
individual weight of the control points is constant.

2.3. Extended isogeometric finite elements

The idea of XFEM is to introduce physical functions with a priori
knowledge of the problem field to the approximation [14]. The
basic difference between XFEM and FEM is that the former involves
the solution of the additional parameters blended to the approxi-
mation by the partition of unity. Similar to the enrichment
functions used in XFEM, the XIGA velocity field of the cracked
solids can be expressed as

_uhðxÞ ¼
X

I2S
NI xð Þ _qI þ

X

J2Sc

NJ xð Þ H xð Þ # H xJ
& '& '

_aJ

þ
X

K2St

NK xð Þ
X4

a¼1

Fa xð Þ # Fa xKð Þð Þ _ba
K ð18Þ

Fig. 1. 1D and 2D B-spline basis functions.

Fig. 2. Illustration of enriched control points for a quadratic NURBS net.

H. Nguyen-Xuan et al. / Theoretical and Applied Fracture Mechanics 72 (2014) 13–27 15

bp
ℓ (ξ) bq

k(η)

Bi(ξ, η)

Many more good properties: partition of unity
n∑

i=1
Bi(ξ, η) ≡ 1, Cp−1 continuity, ...

6 / 21



Isogeometric Analysis
Geometry: bijective mapping from the unit square to the physical domain Ωh ⊂ Rd

xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · xi ∀(ξ, η) ∈ [0, 1]2 =: Ω̂

• the shape of Ωh is fully specified by the
set of control points xi ∈ Rd

• interior control points must be chosen
such that ‘grid lines’ do not fold as this
violates the bijectivity of xh : Ω̂ → Ωh

• refinement in h (knot insertion) and p
(order elevation) preserves the shape of
Ωh and can be used to generate finer
computational ‘grids’ for the analysis
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Isogeometric Analysis
Data, boundary conditions, and solution: forward mappings from the unit square

(r.h.s vector) fh ◦ xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · fi ∀(ξ, η) ∈ [0, 1]2

(boundary conditions) gh ◦ xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · gi ∀(ξ, η) ∈ ∂[0, 1]2

(solution) uh ◦ xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · ui ∀(ξ, η) ∈ [0, 1]2

Model problem: Poisson’s equation

−∆uh = fh in Ωh, uh = gh on ∂Ωh
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Isogeometric Analysis
Different solution approaches

• Galerkin-type IGA (Hughes et al. 2005 and many more)
• Isogeometric collocation methods (Reali, Hughes, 2015)
• Variational collocation method (Gomez, De Lorenzis, 2016)

Abstract representation
Given xi (geometry), fi (r.h.s. vector), and gi (boundary conditions), computeu1

...
un

 = A−1


x1

...
xn

 ,

g1
...

gn


 · b


x1

...
xn

 ,

f1
...

fn

 ,

g1
...

gn




Any point of the solution can afterwards be obtained by a simple function evaluation

(ξ, η) ∈ [0, 1]2 7→ uh ◦ xh(ξ, η) = [B1(ξ, η), . . . , Bn(ξ, η)] ·

u1
...

un
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un


Let us interpret the sets of B-spline coefficients {xi}, {fi}, and {gi} as an efficient
encoding of our PDE problem that is fed into our IGA machinery as input.
The output of our IGA machinery are the B-spline coefficients {ui} of the solution.
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Isogeometric Analysis + PINNs
IgaNet: replace computation by physics-informed machine learningu1

...
un

 = A−1


x1

...
xn

 ,

g1
...

gn


 · b


x1

...
xn

 ,

f1
...

fn

 ,

g1
...

gn




u1
...

un

 = PINN


x1

...
xn

 ,

f1
...

fn

 ,

g1
...

gn

 ; (ξ(k), η(k))Nsamples
k=1


Compute the solution by evaluating the trained neural network

uh(ξ, η) ≈ [B1(ξ, η), . . . , Bn(ξ, η)] ·

u1
...

un

 = PINN


x1

...
xn

 ,

f1
...

fn

 ,

g1
...

gn

 ; (ξ, η)
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IgaNet architecture

x1

xn

f1

fn

g1

gn

ξ, η

σ

σ

σ

σ

σ

σ

σ

σ

σ

u1

un

loss = lossPDE + lossBDR

loss < ε end training

∂loss
∂(w, b) → update w, b

and continue training

ge
om

et
ry

r.h
.s.

ve
ct

or
bd

r.
co

nd
.

co
or

ds
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x1

xn

f1

fn

g1

gn

σ

σ

σ

σ

σ

σ

σ

σ

σ

u1

un

loss = lossPDE + lossBDR

loss < ε end training

∂loss
∂(w, b) → update w, b

and continue training

ge
om

et
ry

r.h
.s.

ve
ct

or
bd

r.
co

nd
.

coords (ξ(k), η(k))N
k=1
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Loss function

lossPDE = α

NΩ

NΩ∑
k=1

∣∣∣∆ [
uh ◦ xh

(
ξ(k), η(k)

)]
− fh ◦ xh

(
ξ(k), η(k)

)∣∣∣2
lossBDR = β

NΓ

NΓ∑
k=1

∣∣∣uh ◦ xh

(
ξ(k), η(k)

)
− gh ◦ xh

(
ξ(k), η(k)

)∣∣∣2
Express derivatives with respect to physical space variables using the Jacobian J , the
Hessian H and the matrix of squared first derivatives Q (Schillinger et al. 2013):

∂2B
∂x2

∂2B
∂x∂y

∂2B
∂y2

 = Q−⊤




∂2B
∂ξ2

∂2B
∂ξ∂η

∂2B
∂η2

− H⊤J−⊤

∂B
∂ξ

∂B
∂η
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Two-level training strategy
For [x1, . . . , xn] ∈ Sgeo, [f1, . . . , fn] ∈ Srhs, [g1, . . . , gn] ∈ Sbcond do

For a batch of randomly sampled (ξk, ηk) ∈ [0, 1]2 do

Train PINN


x1

...
xn

 ,

f1
...

fn

 ,

g1
...

gn

 ; (ξk, ηk)Nsamples
k=1

 7→

u1
...

un


EndFor

EndFor

IGA details: 7 × 7 bi-cubic tensor-product B-splines for xh and uh, C2-continuous

PINN details: TensorFlow 2.6, 7-layer neural network with 50 neurons per layer and ReLU
activation function (except for output layer), Adam optimizer, 30.000 epochs, training is
stopped after 3.000 epochs w/o improvement of the loss value

Ongoing master thesis work of Frank van Ruiten, TU Delft
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Test case: Poisson’s equation on a variable annulus

g ≡ 0
g

≡
0,

1,
. .

. ,
11

0rad

1rad2rad

3rad

4rad

f ≡ 0, 1, . . . , 11

Ongoing master thesis work of Frank van Ruiten, TU Delft
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Preliminary results
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Preliminary results
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Towards an ML-friendly B-spline formulation

Common computational task

Given sampling point ξ ∈ [ξℓ, ξℓ+1) compute for r ≥ 0

dr

dξ
χ(ξ) =

[dr

dξ
bp

ℓ−p(ξ), . . . ,
dr

dξ
bp

ℓ (ξ)
]

· [χℓ−p, . . . , χℓ]︸ ︷︷ ︸
network’s output

• The above needs to be performed for all sampling points ξ(k) in the batch

sum(drBp ⊙ X , 2)

• The above needs to be differentiated by the AD engine during backpropagation

∂
(
drbp

ℓχℓ

)
∂w

= dr+1bp
ℓ

∂ξ

∂w
χ + drbp

ℓ

∂χ

∂ξ
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dr

dξ
χ(ξ) =

[dr

dξ
bp

ℓ−p(ξ), . . . ,
dr

dξ
bp

ℓ (ξ)
]

· [χℓ−p, . . . , χℓ]︸ ︷︷ ︸
network’s output

Textbook derivatives

dr

dξ
bp

ℓ (ξ) = (p − 1)
(

1
ξℓ+p − ξℓ+1

−dr−1

dξ
bp−1

ℓ+1 (ξ) + 1
ξℓ+p−1 − ξℓ

dr−1

dξ
bp−1

ℓ (ξ)
)

with

bp
ℓ (ξ) = ξ − ξℓ

ξℓ+p − ξℓ
bp−1

ℓ (ξ) + ξℓ+p+1 − ξ

ξℓ+p+1 − ξℓ+1
bp−1

ℓ+1 (ξ), b0
ℓ (ξ) =

{
1 if ξℓ ≤ ξ < ξℓ+1
0 otherwise
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Towards an ML-friendly B-spline formulation
Matrix representation of B-splines (Lyche and Morken 2011)[dr

dξ
bp

ℓ−p(ξ), . . . ,
dr

dξ
bp

ℓ (ξ)
]

= p!
(p − r)!R1(ξ) · · · Rp−r(ξ)dRp−r+1 · · · dRp

with k × k + 1 matrices Rk(ξ), e.g.

R1(ξ) =
[

ξℓ+1−ξ
ξℓ+1−ξℓ

x−ξℓ
ξℓ+1−ξℓ

]

R2(ξ) =

 ξℓ+1−ξ
ξℓ+1−ξℓ−1

x−ξℓ−1
ξℓ+1−ξℓ−1

0

0 ξℓ+2−ξ
ξℓ+2−ξℓ

x−ξℓ
ξℓ+2−ξℓ


R3(ξ) = . . .

There exists an efficient algorithm based on elementwise operations on vectors.
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Conclusion and outlook
IgaNets combine classical numerics with scientific machine learning and may finally enable
integrated and interactive computer-aided design-through-analysis workflows

Todo
• performance and hyper-parameter tuning
• extension to multi-patch topologies
• use of IGA and IgaNets in concert
• transfer learning upon basis refinement

Short paper: Möller, Toshniwal, van Ruiten: Physics-informed
machine learning embedded into isogeometric analysis, 2021. �

MATHEMATICS:  
 K E Y  E N A B L I N G  T E C H N O L O G Y   
F O R  S C I E N T I F I C  M A C H I N E  
L E A R N I N G

—

Thank you for your attention!
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