IgaNets: Physics-Informed Machine Learning Embedded Into Isogeometric Analysis

Matthias Möller, Deepesh Toshniwal, Frank van Ruiten

Department of Applied Mathematics
Delft University of Technology, The Netherlands

9th GACM Colloquium on Computational Mechanics 2022
21-23 September 2022, Essen, Germany

MS 12: Scientific Machine Learning in Computational Mechanics

Motivation

FDM, FVM, FEM, BEM, IGA, ...

PINNs, DeepONets, FourierNets, ...

VS.

Motivation

FDM, FVM, FEM, BEM, IGA, ...

> PINNs, DeepONets, FourierNets, ...

Common misconceptions

- "Method a is/is not as accurate as method b"
- "Method a is x-times faster/slower than method b "

Motivation

FDM, FVM, FEM, BEM, IGA,

B sound mathematical foundation
B established engineering workflows
R no cost amortization over multiple runs, no real-time capability

PINNs, DeepONets, FourierNets,

\checkmark fast evaluation (costly training!)
B inclusion of (measurement) data
β lack of convergence theory
R lack of general acceptance

Common misconceptions

- "Method a is/is not as accurate as method b"
- "Method a is x-times faster/slower than method b "

Better questions to ask

- What are the specific strengths/weaknesses of the different approaches?

Motivation

FDM, FVM, FEM, BEM, IGA,
B sound mathematical foundation
B established engineering workflows

PINNs, DeepONets, FourierNets,
B fast evaluation (costly training!)
and
\checkmark inclusion of (measurement) data

Common misconceptions

- "Method a is/is not as accurate as method b"
- "Method a is x-times faster/slower than method b "

Better questions to ask

- What are the specific strengths/weaknesses of the different approaches?
- How can we combine the strengths of both classes of methods?

Motivation

FDM, FVM, FEM, BEM, IGA,
B sound mathematical foundation
B established engineering workflows

PINNs, DeepONets, FourierNets,
B fast evaluation (costly training!)
and
\checkmark inclusion of (measurement) data

Common misconceptions

- "Method a is/is not as accurate as method b"
- "Method a is x-times faster/slower than method b "

Better questions to ask

- What are the specific strengths/weaknesses of the different approaches?
- How can we combine the strengths of both classes of methods?
- What is the envisaged purpose of the new approach?

Design-through-Analysis - IGA's ultimate goal from day one on

Vision: fast interactive qualitative analysis and accurate quantitative analysis within the same computational framework with seamless switching between both approaches

[^0]
Physics-informed machine learning

PINN (Raissi et al. 2018): learns the (initial-)boundary-value problem

Physics-informed machine learning

PINN (Raissi et al. 2018): learns the (initial-)boundary-value problem

Physics-informed machine learning

PINN (Raissi et al. 2018): learns the (initial-)boundary-value problem

B easy to implement for 'any' PDE B combined un-/supervised learning
\& poor extrapolation/generalization
\& collocation-based approach requires re-evaluation of NN at every point
R rudimentary convergence theory

DeepONet (Lu et al. 2019): learns the differential operator
$G_{\theta}(u)(y)=\sum_{k=1}^{q} \underbrace{b_{k}\left(u\left(x_{1}\right), u\left(x_{2}\right), \ldots, u\left(x_{m}\right)\right)}_{\text {branch }} \underbrace{t_{k}(y)}_{\text {trunk }}$

Physics-informed machine learning

PINN (Raissi et al. 2018): learns the (initial-)boundary-value problem

B easy to implement for 'any' PDE B combined un-/supervised learning
\& poor extrapolation/generalization
\& collocation-based approach requires re-evaluation of NN at every point
R rudimentary convergence theory

DeepONet (Lu et al. 2019): learns the differential operator $G_{\theta}(u)(y)=\sum_{k=1}^{q} \underbrace{b_{k}\left(u\left(x_{1}\right), u\left(x_{2}\right), \ldots, u\left(x_{m}\right)\right)}_{\text {branch }} \underbrace{t_{k}(y)}_{\text {trunk }}$ Don't we know a good basis?

B-spline basis functions

Cox de Boor recursion formula

$$
\begin{aligned}
& b_{\ell}^{0}(\xi)= \begin{cases}1 & \text { if } \xi_{\ell} \leq \xi<\xi_{\ell+1} \\
0 & \text { otherwise }\end{cases} \\
& b_{\ell}^{p}(\xi)=\frac{\xi-\xi_{\ell}}{\xi_{\ell+p}-\xi_{\ell}} b_{\ell}^{p-1}(\xi) \\
& +\frac{\xi_{\ell+p+1}-\xi}{\xi_{\ell+p+1}-\xi_{\ell+1}} b_{\ell+1}^{p-1}(\xi)
\end{aligned}
$$

B-spline basis functions

Cox de Boor recursion formula

Many good properties: compact support $\left[\xi_{\ell}, \xi_{\ell+p+1}\right)$, positive function values over support interval, derivatives of B-splines are combinations of lower-order B-splines, ...

Isogeometric Analysis

Paradigm: represent 'everything' in terms of tensor products of B-spline basis functions

$$
B_{i}(\xi, \eta):=b_{\ell}^{p}(\xi) \cdot b_{k}^{q}(\eta), \quad i:=(k-1) \cdot n_{\ell}+\ell, \quad 1 \leq \ell \leq n_{\ell}, \quad 1 \leq k \leq n_{k},
$$

Isogeometric Analysis

Paradigm: represent 'everything' in terms of tensor products of B-spline basis functions

$$
B_{i}(\xi, \eta):=b_{\ell}^{p}(\xi) \cdot b_{k}^{q}(\eta), \quad i:=(k-1) \cdot n_{\ell}+\ell, \quad 1 \leq \ell \leq n_{\ell}, \quad 1 \leq k \leq n_{k},
$$

Many more good properties: partition of unity $\sum_{i=1}^{n} B_{i}(\xi, \eta) \equiv 1, C^{p-1}$ continuity, \ldots

Isogeometric Analysis

Geometry: bijective mapping from the unit square to the physical domain $\Omega_{h} \subset \mathbb{R}^{d}$

$$
\mathbf{x}_{h}(\xi, \eta)=\sum_{i=1}^{n} B_{i}(\xi, \eta) \cdot \mathbf{x}_{i} \quad \forall(\xi, \eta) \in[0,1]^{2}=: \hat{\Omega}
$$

- the shape of Ω_{h} is fully specified by the set of control points $\mathbf{x}_{i} \in \mathbb{R}^{d}$

Isogeometric Analysis

Geometry: bijective mapping from the unit square to the physical domain $\Omega_{h} \subset \mathbb{R}^{d}$

$$
\mathbf{x}_{h}(\xi, \eta)=\sum_{i=1}^{n} B_{i}(\xi, \eta) \cdot \mathbf{x}_{i} \quad \forall(\xi, \eta) \in[0,1]^{2}=: \hat{\Omega}
$$

- the shape of Ω_{h} is fully specified by the set of control points $\mathbf{x}_{i} \in \mathbb{R}^{d}$
- interior control points must be chosen such that 'grid lines' do not fold as this violates the bijectivity of $\mathbf{x}_{h}: \hat{\Omega} \rightarrow \Omega_{h}$

Isogeometric Analysis

Geometry: bijective mapping from the unit square to the physical domain $\Omega_{h} \subset \mathbb{R}^{d}$

$$
\mathbf{x}_{h}(\xi, \eta)=\sum_{i=1}^{n} B_{i}(\xi, \eta) \cdot \mathbf{x}_{i} \quad \forall(\xi, \eta) \in[0,1]^{2}=: \hat{\Omega}
$$

- the shape of Ω_{h} is fully specified by the set of control points $\mathbf{x}_{i} \in \mathbb{R}^{d}$
- interior control points must be chosen such that 'grid lines' do not fold as this violates the bijectivity of $\mathrm{x}_{h}: \hat{\Omega} \rightarrow \Omega_{h}$
- refinement in h (knot insertion) and p (order elevation) preserves the shape of Ω_{h} and can be used to generate finer computational 'grids' for the analysis

Isogeometric Analysis

Data, boundary conditions, and solution: forward mappings from the unit square

$$
\begin{array}{rll}
\text { (r.h.s vector) } & f_{h} \circ \mathbf{x}_{h}(\xi, \eta)=\sum_{i=1}^{n} B_{i}(\xi, \eta) \cdot f_{i} & \forall(\xi, \eta) \in[0,1]^{2} \\
\text { (boundary conditions) } & g_{h} \circ \mathbf{x}_{h}(\xi, \eta)=\sum_{i=1}^{n} B_{i}(\xi, \eta) \cdot g_{i} & \forall(\xi, \eta) \in \partial[0,1]^{2} \\
\text { (solution) } & u_{h} \circ \mathbf{x}_{h}(\xi, \eta)=\sum_{i=1}^{n} B_{i}(\xi, \eta) \cdot u_{i} & \forall(\xi, \eta) \in[0,1]^{2}
\end{array}
$$

Isogeometric Analysis

Data, boundary conditions, and solution: forward mappings from the unit square

$$
\begin{array}{rll}
\text { (r.h.s vector) } & f_{h} \circ \mathbf{x}_{h}(\xi, \eta)=\sum_{i=1}^{n} B_{i}(\xi, \eta) \cdot f_{i} & \forall(\xi, \eta) \in[0,1]^{2} \\
\text { (boundary conditions) } & g_{h} \circ \mathbf{x}_{h}(\xi, \eta)=\sum_{i=1}^{n} B_{i}(\xi, \eta) \cdot g_{i} & \forall(\xi, \eta) \in \partial[0,1]^{2} \\
\text { (solution) } & u_{h} \circ \mathbf{x}_{h}(\xi, \eta)=\sum_{i=1}^{n} B_{i}(\xi, \eta) \cdot u_{i} & \forall(\xi, \eta) \in[0,1]^{2}
\end{array}
$$

Model problem: Poisson's equation

$$
-\Delta u_{h}=f_{h} \quad \text { in } \quad \Omega_{h}, \quad u_{h}=g_{h} \quad \text { on } \quad \partial \Omega_{h}
$$

Isogeometric Analysis

Different solution approaches

- Galerkin-type IGA (Hughes et al. 2005 and many more)
- Isogeometric collocation methods (Reali, Hughes, 2015)
- Variational collocation method (Gomez, De Lorenzis, 2016)

Isogeometric Analysis

Different solution approaches

- Galerkin-type IGA (Hughes et al. 2005 and many more)
- Isogeometric collocation methods (Reali, Hughes, 2015)
- Variational collocation method (Gomez, De Lorenzis, 2016)

Abstract representation

Given \mathbf{x}_{i} (geometry), f_{i} (r.h.s. vector), and g_{i} (boundary conditions), compute

$$
\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]=A^{-1}\left(\left[\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right],\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{n}
\end{array}\right]\right) \cdot b\left(\left[\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right],\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right],\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{n}
\end{array}\right]\right)
$$

Any point of the solution can afterwards be obtained by a simple function evaluation

$$
(\xi, \eta) \in[0,1]^{2} \quad \mapsto \quad u_{h} \circ \mathbf{x}_{h}(\xi, \eta)=\left[B_{1}(\xi, \eta), \ldots, B_{n}(\xi, \eta)\right] \cdot\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]
$$

Isogeometric Analysis

Abstract representation

Given \mathbf{x}_{i} (geometry), f_{i} (r.h.s. vector), and g_{i} (boundary conditions), compute

$$
\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]=A^{-1}\left(\left[\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right],\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{n}
\end{array}\right]\right) \cdot b\left(\left[\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right],\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right],\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{n}
\end{array}\right]\right)
$$

Any point of the solution can afterwards be obtained by a simple function evaluation

$$
(\xi, \eta) \in[0,1]^{2} \quad \mapsto \quad u_{h} \circ \mathbf{x}_{h}(\xi, \eta)=\left[B_{1}(\xi, \eta), \ldots, B_{n}(\xi, \eta)\right] \cdot\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]
$$

Let us interpret the sets of \mathbf{B}-spline coefficients $\left\{\mathbf{x}_{i}\right\},\left\{f_{i}\right\}$, and $\left\{g_{i}\right\}$ as an efficient encoding of our PDE problem that is fed into our IGA machinery as input.
The output of our IGA machinery are the B-spline coefficients $\left\{u_{i}\right\}$ of the solution.

Isogeometric Analysis + PINNs

IgaNet: replace computation by physics-informed machine learning

$$
\begin{aligned}
& {\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]=A^{-1}\left(\left[\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right],\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{n}
\end{array}\right]\right) \cdot b\left(\left[\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right],\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right],\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{n}
\end{array}\right]\right)} \\
& {\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]=\operatorname{PINN}\left(\left[\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right],\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right],\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{n}
\end{array}\right] ;\left(\xi^{(k)}, \eta^{(k)}\right)_{k=1}^{N_{\text {samples }}}\right)}
\end{aligned}
$$

Compute the solution by evaluating the trained neural network

$$
u_{h}(\xi, \eta) \approx\left[B_{1}(\xi, \eta), \ldots, B_{n}(\xi, \eta)\right] \cdot\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]=\operatorname{PINN}\left(\left[\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right],\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right],\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{n}
\end{array}\right] ;(\xi, \eta)\right)
$$

IgaNet architecture

IgaNet architecture

Loss function

$$
\begin{aligned}
& \operatorname{loss}_{\mathrm{PDE}}=\frac{\alpha}{N_{\Omega}} \sum_{k=1}^{N_{\Omega}}\left|\Delta\left[u_{h} \circ \mathbf{x}_{h}\left(\xi^{(k)}, \eta^{(k)}\right)\right]-f_{h} \circ \mathbf{x}_{h}\left(\xi^{(k)}, \eta^{(k)}\right)\right|^{2} \\
& \operatorname{loss}_{\mathrm{BDR}}=\frac{\beta}{N_{\Gamma}} \sum_{k=1}^{N_{\Gamma}}\left|u_{h} \circ \mathbf{x}_{h}\left(\xi^{(k)}, \eta^{(k)}\right)-g_{h} \circ \mathbf{x}_{h}\left(\xi^{(k)}, \eta^{(k)}\right)\right|^{2}
\end{aligned}
$$

Express derivatives with respect to physical space variables using the Jacobian J, the Hessian H and the matrix of squared first derivatives Q (Schillinger et al. 2013):

$$
\left[\begin{array}{l}
\frac{\partial^{2} B}{\partial x^{2}} \\
\frac{\partial^{2} B}{\partial x \partial y} \\
\frac{\partial^{2} B}{\partial y^{2}}
\end{array}\right]=Q^{-\top}\left(\left[\begin{array}{c}
\frac{\partial^{2} B}{\partial \xi^{2}} \\
\frac{\partial^{2} B}{\partial \xi \partial \eta} \\
\frac{\partial^{2} B}{\partial \eta^{2}}
\end{array}\right]-H^{\top} J^{-\top}\left[\begin{array}{c}
\frac{\partial B}{\partial \xi} \\
\frac{\partial B}{\partial \eta}
\end{array}\right]\right)
$$

Two-level training strategy

For $\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right] \in \mathcal{S}_{\text {geo }},\left[f_{1}, \ldots, f_{n}\right] \in \mathcal{S}_{\text {rhs }},\left[g_{1}, \ldots, g_{n}\right] \in \mathcal{S}_{\text {bcond }} \mathbf{d o}$
For a batch of randomly sampled $\left(\xi_{k}, \eta_{k}\right) \in[0,1]^{2}$ do

$$
\text { Train PINN }\left(\left[\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right],\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right],\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{n}
\end{array}\right] ;\left(\xi_{k}, \eta_{k}\right)_{k=1}^{N_{\text {samples }}}\right) \mapsto\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]
$$

EndFor

EndFor

IGA details: 7×7 bi-cubic tensor-product B-splines for \mathbf{x}_{h} and u_{h}, C^{2}-continuous
PINN details: TensorFlow 2.6, 7-layer neural network with 50 neurons per layer and ReLU activation function (except for output layer), Adam optimizer, 30.000 epochs, training is stopped after 3.000 epochs w/o improvement of the loss value

[^1]
Test case: Poisson's equation on a variable annulus

Ongoing master thesis work of Frank van Ruiten, TU Delft

Preliminary results

Ongoing master thesis work of Frank van Ruiten, TU Delft

Preliminary results

Ongoing master thesis work of Frank van Ruiten, TU Delft

Preliminary results

Ongoing master thesis work of Frank van Ruiten, TU Delft

Preliminary results

Ongoing master thesis work of Frank van Ruiten, TU Delft

Preliminary results

Ongoing master thesis work of Frank van Ruiten, TU Delft

Towards an ML-friendly B-spline formulation

Common computational task

Given sampling point $\xi \in\left[\xi_{\ell}, \xi_{\ell+1}\right)$ compute for $r \geq 0$

$$
\frac{\mathrm{d}^{r}}{\mathrm{~d} \xi} \chi(\xi)=\left[\frac{\mathrm{d}^{r}}{\mathrm{~d} \xi} b_{\ell-p}^{p}(\xi), \ldots, \frac{\mathrm{d}^{r}}{\mathrm{~d} \xi} b_{\ell}^{p}(\xi)\right] \cdot \underbrace{\left[\chi_{\ell-p}, \ldots, \chi_{\ell}\right]}_{\text {network's output }}
$$

Towards an ML-friendly B-spline formulation

Common computational task

Given sampling point $\xi \in\left[\xi_{\ell}, \xi_{\ell+1}\right)$ compute for $r \geq 0$

$$
\frac{\mathrm{d}^{r}}{\mathrm{~d} \xi} \chi(\xi)=\left[\frac{\mathrm{d}^{r}}{\mathrm{~d} \xi} b_{\ell-p}^{p}(\xi), \ldots, \frac{\mathrm{d}^{r}}{\mathrm{~d} \xi} b_{\ell}^{p}(\xi)\right] \cdot \underbrace{[\chi \ell-p, \ldots, \chi \ell]}_{\text {network's output }}
$$

- The above needs to be performed for all sampling points $\xi^{(k)}$ in the batch

$$
\operatorname{sum}\left(\mathrm{d}^{r} \mathcal{B}^{p} \odot \mathcal{X}, 2\right)
$$

Towards an ML-friendly B-spline formulation

Common computational task

Given sampling point $\xi \in\left[\xi_{\ell}, \xi_{\ell+1}\right)$ compute for $r \geq 0$

$$
\frac{\mathrm{d}^{r}}{\mathrm{~d} \xi} \chi(\xi)=\left[\frac{\mathrm{d}^{r}}{\mathrm{~d} \xi} b_{\ell-p}^{p}(\xi), \ldots, \frac{\mathrm{d}^{r}}{\mathrm{~d} \xi} b_{\ell}^{p}(\xi)\right] \cdot \underbrace{[\chi \ell-p, \ldots, \chi \chi]}_{\text {network's output }}
$$

- The above needs to be performed for all sampling points $\xi^{(k)}$ in the batch

$$
\operatorname{sum}\left(\mathrm{d}^{r} \mathcal{B}^{p} \odot \mathcal{X}, 2\right)
$$

- The above needs to be differentiated by the AD engine during backpropagation

$$
\frac{\partial\left(\mathrm{d}^{r} b_{\ell}^{p} \chi_{\ell}\right)}{\partial w}=\mathrm{d}^{r+1} b_{\ell}^{p} \frac{\partial \xi}{\partial w} \chi+\mathrm{d}^{r} b_{\ell}^{p} \frac{\partial \chi}{\partial \xi}
$$

Towards an ML-friendly B-spline formulation

Common computational task

Given sampling point $\xi \in\left[\xi_{\ell}, \xi_{\ell+1}\right)$ compute for $r \geq 0$

$$
\frac{\mathrm{d}^{r}}{\mathrm{~d} \xi} \chi(\xi)=\left[\frac{\mathrm{d}^{r}}{\mathrm{~d} \xi} b_{\ell-p}^{p}(\xi), \ldots, \frac{\mathrm{d}^{r}}{\mathrm{~d} \xi} b_{\ell}^{p}(\xi)\right] \cdot \underbrace{\left[\chi_{\ell-p}, \ldots, \chi_{\ell}\right]}_{\text {network's output }}
$$

Textbook derivatives

$$
\frac{\mathrm{d}^{r}}{\mathrm{~d} \xi} b_{\ell}^{p}(\xi)=(p-1)\left(\frac{1}{\xi_{\ell+p}-\xi_{\ell+1}} \frac{-\mathrm{d}^{r-1}}{\mathrm{~d} \xi} b_{\ell+1}^{p-1}(\xi)+\frac{1}{\xi_{\ell+p-1}-\xi_{\ell}} \frac{\mathrm{d}^{r-1}}{\mathrm{~d} \xi} b_{\ell}^{p-1}(\xi)\right)
$$

with

$$
b_{\ell}^{p}(\xi)=\frac{\xi-\xi_{\ell}}{\xi_{\ell+p}-\xi_{\ell}} b_{\ell}^{p-1}(\xi)+\frac{\xi_{\ell+p+1}-\xi}{\xi_{\ell+p+1}-\xi_{\ell+1}} b_{\ell+1}^{p-1}(\xi), \quad b_{\ell}^{0}(\xi)= \begin{cases}1 & \text { if } \xi_{\ell} \leq \xi<\xi_{\ell+1} \\ 0 & \text { otherwise }\end{cases}
$$

Towards an ML-friendly B-spline formulation

Matrix representation of B-splines (Lyche and Morken 2011)

$$
\left[\frac{\mathrm{d}^{r}}{\mathrm{~d} \xi} b_{\ell-p}^{p}(\xi), \ldots, \frac{\mathrm{d}^{r}}{\mathrm{~d} \xi} b_{\ell}^{p}(\xi)\right]=\frac{p!}{(p-r)!} R_{1}(\xi) \cdots R_{p-r}(\xi) \mathrm{d} R_{p-r+1} \cdots \mathrm{~d} R_{p}
$$

with $k \times k+1$ matrices $R_{k}(\xi)$, e.g.

$$
\begin{aligned}
R_{1}(\xi) & =\left[\begin{array}{lll}
\frac{\xi_{\ell+1}-\xi}{\xi_{\ell+1}-\xi_{\ell}} & \frac{x-\xi_{\ell}}{\xi_{\ell+1}-\xi_{\ell}}
\end{array}\right] \\
R_{2}(\xi) & =\left[\begin{array}{ccc}
\frac{\xi_{\ell+1}-\xi}{\xi_{\ell+1}-\xi_{\ell-1}} & \frac{x-\xi_{\ell-1}}{\xi_{\ell+1}-\xi_{\ell-1}} & 0 \\
0 & \frac{\xi_{\ell+2}-\xi}{\xi_{\ell+2}-\xi_{\ell}} & \frac{x-\xi_{\ell}}{\xi_{\ell+2}-\xi_{\ell}}
\end{array}\right] \\
R_{3}(\xi) & =\ldots
\end{aligned}
$$

There exists an efficient algorithm based on elementwise operations on vectors.

Conclusion and outlook

IgaNets combine classical numerics with scientific machine learning and may finally enable integrated and interactive computer-aided design-through-analysis workflows

Todo

- performance and hyper-parameter tuning
- extension to multi-patch topologies
- use of IGA and IgaNets in concert
- transfer learning upon basis refinement

Short paper: Möller, Toshniwal, van Ruiten: Physics-informed machine learning embedded into isogeometric analysis, 2021. 鲯

Conclusion and outlook

IgaNets combine classical numerics with scientific machine learning and may finally enable integrated and interactive computer-aided design-through-analysis workflows

Todo

- performance and hyper-parameter tuning
- extension to multi-patch topologies
- use of IGA and IgaNets in concert
- transfer learning upon basis refinement

Short paper: Möller, Toshniwal, van Ruiten: Physics-informed machine learning embedded into isogeometric analysis, 2021. 鲯

Thank you for your attention!

[^0]: Photo: Siemens - Simulation for Design Engineers

[^1]: Ongoing master thesis work of Frank van Ruiten, TU Delft

