

On a failsafe flux limiting approach for the Euler equations

Dmitri Kuzmin¹ Matthias Möller²

¹Chair of Applied Mathematics III, University Erlangen-Nuremberg, Germany

²Institute of Applied Mathematics (LS3), TU Dortmund, Germany

Motivation

High-resolution schemes yield accurate results. But ...

Objective: to design flux corrected FEM with failsafe feature

Outline

1 High-resolution scheme

- Finite element approximation
- Flux-correction algorithm
- Failsafe post-processing

2 Applications

- Constrained initialization
- Idealized Z-pinch implosion model
- Ideal MHD equations

3 Conclusions

Finite element approximation

$$\frac{\partial U}{\partial t} + \nabla \cdot \mathbf{F}(U) = 0, \qquad U = \begin{pmatrix} \rho \\ \rho \mathbf{v} \\ \rho E \end{pmatrix}, \quad \mathbf{F} = \begin{pmatrix} \rho \mathbf{v} \\ \rho \mathbf{v} \otimes \mathbf{v} + p\mathcal{I} \\ (\rho E + p) \mathbf{v} \end{pmatrix}$$

Weak formulation

$$\int_{\Omega} W \left[\frac{\partial U}{\partial t} + \nabla \cdot \mathbf{F}(U) \right] \, \mathrm{d}\mathbf{x} = 0, \quad \forall W \in \mathcal{W}$$

¹C.A.J. Fletcher, CMAME 1983, 37(2), pp. 225-244

$$\frac{\partial U}{\partial t} + \nabla \cdot \mathbf{F}(U) = 0, \qquad U = \begin{pmatrix} \rho \\ \rho \mathbf{v} \\ \rho E \end{pmatrix}, \quad \mathbf{F} = \begin{pmatrix} \rho \mathbf{v} \\ \rho \mathbf{v} \otimes \mathbf{v} + p\mathcal{I} \\ (\rho E + p) \mathbf{v} \end{pmatrix}$$

Weak formulation (using integration by parts)

$$\int_{\Omega} W \frac{\partial U}{\partial t} \, \mathrm{d}\mathbf{x} = \int_{\Omega} \nabla W \cdot \mathbf{F}(U) \, \mathrm{d}\mathbf{x} - \int_{\Gamma} W \, \mathbf{n} \cdot \mathbf{F}(U) \, \mathrm{d}s, \quad \forall W \in \mathcal{W}$$

¹C.A.J. Fletcher, CMAME 1983, 37(2), pp. 225-244

$$\frac{\partial U}{\partial t} + \nabla \cdot \mathbf{F}(U) = 0, \qquad U = \begin{pmatrix} \rho \\ \rho \mathbf{v} \\ \rho E \end{pmatrix}, \quad \mathbf{F} = \begin{pmatrix} \rho \mathbf{v} \\ \rho \mathbf{v} \otimes \mathbf{v} + p\mathcal{I} \\ (\rho E + p) \mathbf{v} \end{pmatrix}$$

Weak formulation (using integration by parts)

$$\int_{\Omega} W \frac{\partial U}{\partial t} \, \mathrm{d}\mathbf{x} = \int_{\Omega} \nabla W \cdot \mathbf{F}(U) \, \mathrm{d}\mathbf{x} - \int_{\Gamma} W \, \mathbf{n} \cdot \mathbf{F}(U) \, \mathrm{d}s, \quad \forall W \in \mathcal{W}$$

Group representation¹ $U_j(t) = U(\mathbf{x}_j, t), \quad \mathbf{F}_j(t) = \mathbf{F}(U_j(t))$ $U(\mathbf{x}, t) \approx \sum_j \varphi_j(\mathbf{x}) U_j(t), \qquad \mathbf{F}(U) \approx \sum_j \varphi_j(\mathbf{x}) \mathbf{F}_j(t)$

¹C.A.J. Fletcher, CMAME 1983, 37(2), pp. 225–244

Finite element approximation, cont'd

Semi-discrete high-order scheme

$$\sum_{j} m_{ij} \frac{\mathrm{d}U_j}{\mathrm{d}t} = \sum_{j} (\mathbf{c}_{ji} - \mathbf{s}_{ij}) \cdot \mathbf{F}_j \qquad \forall i$$

$$m_{ij} = \int_{\Omega} \varphi_i \varphi_j \, \mathrm{d}\mathbf{x}, \qquad \mathbf{c}_{ji} = \int_{\Omega} \nabla \varphi_i \varphi_j \, \mathrm{d}\mathbf{x}, \qquad \mathbf{s}_{ij} = \int_{\Gamma} \varphi_i \varphi_j \mathbf{n} \, \mathrm{d}s$$

Finite element approximation, cont'd

Semi-discrete high-order scheme

$$\sum_{j} m_{ij} \frac{\mathrm{d}U_j}{\mathrm{d}t} = \sum_{j} (\mathbf{c}_{ji} - \mathbf{s}_{ij}) \cdot \mathbf{F}_j \qquad \forall i$$

$$m_{ij} = \int_{\Omega} \varphi_i \varphi_j \, \mathrm{d}\mathbf{x}, \qquad \mathbf{c}_{ji} = \int_{\Omega} \nabla \varphi_i \varphi_j \, \mathrm{d}\mathbf{x}, \qquad \mathbf{s}_{ij} = \int_{\Gamma} \varphi_i \varphi_j \mathbf{n} \, \mathrm{d}s$$

Semi-discrete low-order scheme

$$m_i \frac{\mathrm{d}U_i}{\mathrm{d}t} = \sum_j (\mathbf{c}_{ji} - \mathbf{s}_{ij}) \cdot \mathbf{F}_j + \sum_{j \neq i} D_{ij} (U_j - U_i) \qquad \forall i$$
$$m_i = \sum_j m_{ij} = \int_{\Omega} \varphi_i \,\mathrm{d}\mathbf{x}, \qquad D_{ij} \text{ artificial viscosity}$$

Finite element approximation, cont'd

Semi-discrete high-order scheme

$$\sum_{j} m_{ij} \frac{\mathrm{d}U_j}{\mathrm{d}t} = \sum_{j} (\mathbf{c}_{ji} - \mathbf{s}_{ij}) \cdot \mathbf{F}_j =: \mathbf{R}_i^H \qquad \forall i$$

$$m_{ij} = \int_{\Omega} \varphi_i \varphi_j \, \mathrm{d}\mathbf{x}, \qquad \mathbf{c}_{ji} = \int_{\Omega} \nabla \varphi_i \varphi_j \, \mathrm{d}\mathbf{x}, \qquad \mathbf{s}_{ij} = \int_{\Gamma} \varphi_i \varphi_j \mathbf{n} \, \mathrm{d}s$$

Semi-discrete low-order scheme

$$m_i \frac{\mathrm{d}U_i}{\mathrm{d}t} = \sum_j (\mathbf{c}_{ji} - \mathbf{s}_{ij}) \cdot \mathbf{F}_j + \sum_{j \neq i} D_{ij} (U_j - U_i) =: \mathbf{R}_i^L \qquad \forall i$$
$$m_i = \sum_j m_{ij} = \int_{\Omega} \varphi_i \, \mathrm{d}\mathbf{x}, \qquad D_{ij} \text{ artificial viscosity}$$

Relation between high- and low-order schemes

$$\sum_{j} m_{ij} \frac{\mathrm{d}U_{j}}{\mathrm{d}t} = R_{i}^{H} \quad \Leftrightarrow \quad m_{i} \frac{\mathrm{d}U_{i}}{\mathrm{d}t} = R_{i}^{L} + \sum_{j \neq i} F_{ij}$$

Raw antidiffusive flux

$$F_{ij} = m_{ij} \left(\frac{\mathrm{d}U_i}{\mathrm{d}t} - \frac{\mathrm{d}U_j}{\mathrm{d}t} \right) + D_{ij}(U_i - U_j), \qquad F_{ji} = -F_{ij}$$

Objective: *linearize* the raw antidiffusive fluxes and *limit* them to prevent the generation of nonphysical under-/overshoots

Linearized FCT algorithm²

1 Compute the low-order solution at $t^{n+1} = t^n + \Delta t$

$$m_i \frac{U_i^L - U_i^n}{\Delta t} = \theta R_i^L(U^L) + (1 - \theta) R_i^L(U^n), \qquad 0 < \theta \le 1$$

²D. Kuzmin, JCP 2009, 228(7), pp. 2517-2534

1 Compute the low-order solution at $t^{n+1} = t^n + \Delta t$

$$m_i \frac{U_i^L - U_i^n}{\Delta t} = \theta R_i^L(U^L) + (1 - \theta) R_i^L(U^n), \qquad 0 < \theta \le 1$$

2 Approximate the time derivative

$$m_i \frac{\mathrm{d}U_i}{\mathrm{d}t} = R_i^L \qquad \Rightarrow \qquad \frac{\mathrm{d}U_i}{\mathrm{d}t} \approx \dot{U}_i^L = \frac{1}{m_i} R_i^L(U^L)$$

²D. Kuzmin, JCP 2009, 228(7), pp. 2517-2534

1 Compute the low-order solution at $t^{n+1} = t^n + \Delta t$

$$m_i \frac{U_i^L - U_i^n}{\Delta t} = \theta R_i^L(U^L) + (1 - \theta) R_i^L(U^n), \qquad 0 < \theta \le 1$$

2 Approximate the time derivative

$$m_i \frac{\mathrm{d}U_i}{\mathrm{d}t} = R_i^L \qquad \Rightarrow \qquad \frac{\mathrm{d}U_i}{\mathrm{d}t} \approx \dot{U}_i^L = \frac{1}{m_i} R_i^L(U^L)$$

Inearize the raw antidiffusive fluxes

$$F_{ij}^{L} = m_{ij}(\dot{U}_{i}^{L} - \dot{U}_{j}^{L}) + D_{ij}(U_{i}^{L} - U_{j}^{L}), \qquad F_{ji}^{L} = -F_{ij}^{L}$$

²D. Kuzmin, JCP 2009, 228(7), pp. 2517-2534

1 Compute the low-order solution at $t^{n+1} = t^n + \Delta t$

$$m_i \frac{U_i^L - U_i^n}{\Delta t} = \theta R_i^L(U^L) + (1 - \theta) R_i^L(U^n), \qquad 0 < \theta \le 1$$

2 Approximate the time derivative

$$m_i \frac{\mathrm{d}U_i}{\mathrm{d}t} = R_i^L \qquad \Rightarrow \qquad \frac{\mathrm{d}U_i}{\mathrm{d}t} \approx \dot{U}_i^L = \frac{1}{m_i} R_i^L(U^L)$$

Inearize the raw antidiffusive fluxes

$$F_{ij}^{L} = m_{ij}(\dot{U}_{i}^{L} - \dot{U}_{j}^{L}) + D_{ij}(U_{i}^{L} - U_{j}^{L}), \qquad F_{ji}^{L} = -F_{ij}^{L}$$

4 Apply the *limited* antidiffusive fluxes

$$m_i U_i^{n+1} = m_i U_i^L + \Delta t \sum_{j \neq i} \alpha_{ij} F_{ij}^L, \qquad 0 \le \alpha_{ij} = \alpha_{ji} \le 1$$

²D. Kuzmin, JCP 2009, 228(7), pp. 2517-2534

Flux limiting for scalar equations

$$m_i u_i^{n+1} = m_i u_i^L + \Delta t \sum_{j \neq i} \alpha_{ij} f_{ij}^L, \qquad f_{ji}^L = -f_{ij}^L, \qquad \alpha_{ij} = \alpha_{ji}$$

Zalesak's limiter³ yields α_{ij} 's such that the nodal values of the corrected solution are bounded by the local extrema of the low-order solution

³S. Zalesak, JCP 1979, 31(3), pp. 335–362

Apply flux limiter to a set of control variables simultaneously

Apply correction factors to the *conservative* antidiffusive fluxes

$$m_i U_i^{n+1} = m_i U_i^L + \Delta t \sum_{j \neq i} \alpha_{ij} F_{ij}^L, \qquad F_{ji}^L = -F_{ij}^L, \qquad \alpha_{ij} = \alpha_{ji}$$

⁴D. Kuzmin, M. M, J.N. Shadid, M. Shashkov, JCP 2010, 229(23), pp. 8766–8779

Flux limiting for systems⁴, cont'd

Apply flux limiter to a set of control variables one after the other

Apply correction factors to the *conservative* antidiffusive fluxes

$$m_i U_i^{n+1} = m_i U_i^L + \Delta t \sum_{j \neq i} \alpha_{ij} F_{ij}^L, \qquad F_{ji}^L = -F_{ij}^L, \qquad \alpha_{ij} = \alpha_{ji}$$

⁴D. Kuzmin, M. M, J.N. Shadid, M. Shashkov, JCP 2010, 229(23), pp. 8766-8779

Flux correction machinery may fail to produce physically correct solutions:

 $\exists i: \quad u_i^{\min} \leq u_i^{FCT} \leq u_i^{\max} \quad \text{is violated for control variable } u$

Remedy: enforce physically-motivated constraints by post-processing

$$\begin{split} m_i U_i^{FCT} &= m_i U_i^L + \Delta t \sum_{j \neq i} \alpha_{ij} F_{ij}^L \\ \Leftrightarrow \quad m_i U_i^L &= m_i U_i^{FCT} - \Delta t \sum_{j \neq i} \alpha_{ij} F_{ij}^L \end{split}$$

⁴D. Kuzmin, M. M, J.N. Shadid, M. Shashkov, JCP 2010, 229(23), pp. 8766-8779

Flux correction machinery may fail to produce physically correct solutions:

 $\exists i: \quad u_i^{\min} \leq u_i^{FCT} \leq u_i^{\max} \quad \text{is violated for control variable } u$

Remedy: enforce physically-motivated constraints by post-processing

$$m_i U_i^{FCT} = m_i U_i^L + \Delta t \sum_{j \neq i} \alpha_{ij} F_{ij}^L$$
$$m_i U_i^{(k)} = m_i U_i^{FCT} - \Delta t \sum_{j \neq i} \beta_{ij}^{(k)} \alpha_{ij} F_{ij}^L, \quad k = 1, ..., K$$

⁴D. Kuzmin, M. M, J.N. Shadid, M. Shashkov, JCP 2010, 229(23), pp. 8766-8779

Flux correction machinery may fail to produce physically correct solutions:

 $\exists i: \quad u_i^{\min} \leq u_i^{FCT} \leq u_i^{\max} \quad \text{is violated for control variable } u$

Remedy: enforce physically-motivated constraints by post-processing

$$m_i U_i^{FCT} = m_i U_i^L + \Delta t \sum_{j \neq i} \alpha_{ij} F_{ij}^L$$
$$m_i U_i^{(k)} = m_i U_i^{FCT} - \Delta t \sum_{j \neq i} \beta_{ij}^{(k)} \alpha_{ij} F_{ij}^L, \quad k = 1, ..., K$$

$$\begin{array}{ll} \mathsf{Example:} & \beta_{ij}^{(0)} \equiv 0, & \beta_{ij}^{(k)} \coloneqq \left\{ \begin{array}{ll} k/K & \text{if failure is detected at } i,j \\ \beta_{ij}^{(k-1)} & \text{otherwise} \end{array} \right. \end{array}$$

⁴D. Kuzmin, M. M, J.N. Shadid, M. Shashkov, JCP 2010, 229(23), pp. 8766-8779

Test: Roe-linearization + FCT, structured grid, Q_1 finite elements

T = 0.2, Crank Nicolson time stepping ($\theta = 0.5$), $\Delta t = 64h \cdot 10^{-4}$

⁵P.R. Woodward, P. Colella, JCP 54, 115 (1984), pp. 115–173

Test: Rusanov-type dissipation + FCT, $\alpha_{ij}(\rho, p)$, $10n \times n$ grid, Q_1 FEs

$$\kappa_u = \log \frac{\|u_{2h} - u_{4h}\|_1}{\|u_h - u_{2h}\|_1} / \log 2$$

	Crank Nicolson time stepping				
	FCT		Low-order		
$n_{\rm fine}$	$\kappa_ ho$	κ_p	$\kappa_ ho$	κ_p	
20	0.624	1.027	0.193	0.623	
40	0.970	1.003	0.421	0.671	
80	1.079	1.005	0.575	0.701	
160	1.073	1.005	0.624	0.730	

	Backward Euler time stepping				
	FCT		Low-order		
$n_{\rm fine}$	$\kappa_ ho$	κ_p	$\kappa_ ho$	κ_p	
20	0.671	0.982	0.190	0.619	
40	0.980	0.950	0.416	0.669	
80	0.977	0.947	0.575	0.701	
160	0.981	0.945	0.624	0.730	

Coarse mesh with contour plot of density variable at time $T=0.231\,$

	Crank Nicolson time stepping			Backward Euler time stepping				
	FC	CT	Low-	order	FC	T	Low-	order
#trias	$\kappa_ ho$	κ_p	$\kappa_{ ho}$	κ_p	$\kappa_ ho$	κ_p	$\kappa_{ ho}$	κ_p
18,176	0.925	0.876	0.364	0.665	0.955	0.841	0.357	0.662
72,704	0.874	0.800	0.539	0.679	0.820	0.732	0.536	0.679
290,816	0.806	0.934	0.614	0.718	0.765	0.875	0.616	0.719
1,163,264	0.948	0.966	0.641	0.739	0.889	0.905	0.642	0.740

Linearized FCT algorithm yields accurate and non-oscillatory solutions using P_1 and Q_1 finite elements on structured and unstructured meshes, respectively.

Outline

1 High-resolution scheme

- Finite element approximation
- Flux-correction algorithm
- Failsafe post-processing

2 Applications

- Constrained initialization
- Idealized Z-pinch implosion model
- Ideal MHD equations

B Conclusions

Constrained initialization

Test: discontinuous initial data with P_1 FEs on unstructured mesh $\Omega=(-0.5,0.5)^2,\quad \Omega_{\rm in}=\{(x,y)\in \Omega|r=\sqrt{x^2+y^2}<0.13\}$

	$\Omega_{\rm in}$	$\Omega \setminus \Omega_{\mathrm{in}}$
$ ho_0$	2.0	1.0
\mathbf{v}_0	0.0	0.0
p_0	15.0	1.0

Pointwise initialization

$$U_h(x_i, y_i) := U_0(x_i, y_i)$$

is not conservative!

$$\int_{\Omega} \rho_0 \,\mathrm{d}\mathbf{x} \qquad \int_{\Omega} (\rho E)_0 \,\mathrm{d}\mathbf{x} \qquad \int_{\Omega} \rho_h \,\mathrm{d}\mathbf{x} \qquad \int_{\Omega} (\rho E)_h \,\mathrm{d}\mathbf{x}$$

1.05309 4.35825 1.04799 4.17949

Constrained initialization, cont'd

 \blacksquare Conservative initialization by L_2 projection

$$U_h = \sum_j \varphi_j U_j : \int_{\Omega} W_h U_h d\mathbf{x} = \int_{\Omega} W_h U_0 d\mathbf{x} \quad \forall W_h \in \mathcal{W}_h$$

Consistent mass matrix

Lumped mass matrix

$$\sum_{j} m_{ij} U_j^C = \int_{\Omega} \varphi_i U_0 \mathrm{d} \mathbf{x}$$

$$m_i U_i^L = \int_\Omega \varphi_i U_0 \mathrm{d}\mathbf{x}$$

Constrained initialization, cont'd

Relation between consistent and lumped L_2 projection

$$m_i U_i^C = m_i U_i^L + \sum_{j \neq i} F_{ij}, \qquad F_{ij} = m_{ij} (U_i^C - U_j^C)$$

Constrained L₂ projection

$$m_i U_i = m_i U_i^L + \sum_{j \neq i} \alpha_{ij} F_{ij}$$

Apply failsafe flux correction machinery to compute

$$0 \le \alpha_{ij} = \alpha_{ji} \le 1$$

Outline

1 High-resolution scheme

- Finite element approximation
- Flux-correction algorithm
- Failsafe post-processing

2 Applications

- Constrained initialization
- Idealized Z-pinch implosion model
- Ideal MHD equations

B Conclusions

Idealized Z-pinch implosion model⁶

Generalized Euler system coupled with scalar tracer equation

$$\frac{\partial}{\partial t} \begin{bmatrix} \rho \\ \rho \mathbf{v} \\ \rho E \\ \rho E \\ \rho \lambda \end{bmatrix} + \nabla \cdot \begin{bmatrix} \rho \mathbf{v} \\ \rho \mathbf{v} \otimes \mathbf{v} + p\mathcal{I} \\ \rho E \mathbf{v} + p \mathbf{v} \\ \rho \lambda \mathbf{v} \end{bmatrix} = \begin{bmatrix} 0 \\ \mathbf{f} \\ \mathbf{f} \cdot \mathbf{v} \\ 0 \end{bmatrix}$$

Equation of state

$$p = (\gamma - 1)\rho(E - 0.5|\mathbf{v}|^2)$$

Non-dimensional Lorentz force

$$\mathbf{f} = \left(\rho\lambda\right) \left(\frac{I(t)}{I_{\max}}\right)^2 \frac{\hat{\mathbf{e}}_r}{r_{\text{eff}}}, \quad 0 \le \lambda \le 1$$

⁶J.W. Banks, J.N. Shadid, IJNMF 2009, 61(7), pp. 725-751

Outline

1 High-resolution scheme

- Finite element approximation
- Flux-correction algorithm
- Failsafe post-processing

2 Applications

- Constrained initialization
- Idealized Z-pinch implosion model
- Ideal MHD equations

B Conclusions

Idealized MHD equations

$$\frac{\partial}{\partial t} \begin{bmatrix} \rho \\ \rho \mathbf{v} \\ \mathbf{B} \\ \rho E \end{bmatrix} + \nabla \cdot \begin{bmatrix} \rho \mathbf{v} \\ \rho \mathbf{v} \otimes \mathbf{v} + p\mathcal{I} - \mathbf{B} \otimes \mathbf{B} \\ \mathbf{v} \otimes \mathbf{B} - \mathbf{B} \otimes \mathbf{v} \\ \rho E \mathbf{v} + p \mathbf{v} - (\mathbf{B} \cdot \mathbf{v}) \mathbf{B} \end{bmatrix} = 0$$

subject to $\nabla \cdot \mathbf{B} = \mathbf{0}$

- Divergence involution in 1D: $\partial_x B_x = 0 \Rightarrow B_x = const$
- Hyperbolic conservation laws for 7 variables: ρ , \mathbf{v} , B_y , B_z , ρE
- Roe matrix (for arbitrary γ) by Cargo and Gallice⁷
- FCT limiter is applied to control variables ρ , p, B_y and B_z

⁷P. Cargo, G. Gallice, JCP 1997, 136(2), pp.446-466

$$\begin{array}{l} \bullet \ \gamma = 1.4, \quad B_x = 0.75, \quad t_{\rm fin} = 0.1, \quad 800 \ {\rm grid \ points} \\ (\rho, {\bf v}, B_y, B_z, p)^T = \left\{ \begin{array}{ll} (1.0 \quad , 0.0, \quad 1.0, 0.0, 1.0)^T \quad {\rm if} \ x \leq 0.5 \\ (0.125, 0.0, -1.0, 0.0, 0.1)^T \quad {\rm if} \ x > 0.5 \end{array} \right. \end{array}$$

Outline

1 High-resolution scheme

- Finite element approximation
- Flux-correction algorithm
- Failsafe post-processing

2 Applications

- Constrained initialization
- Idealized Z-pinch implosion model
- Ideal MHD equations

B Conclusions

Conclusions

- Failsafe flux correction algorithm
 - ensures boundedness of physical quantities
 - preserves symmetry on unstructured grids
 - is applicable to 'challenging' applications
 - can be turned into a constrained L_2 projection
- Future research
 - extension to multidimensional MHD equations
 - treatment of the $\nabla \cdot \mathbf{B} = 0$ involution
 - consider non-conforming FEs

Conclusions

- Failsafe flux correction algorithm
 - ensures boundedness of physical quantities
 - preserves symmetry on unstructured grids
 - is applicable to 'challenging' applications
 - can be turned into a constrained L_2 projection
- Future research
 - extension to multidimensional MHD equations
 - treatment of the $\nabla \cdot \mathbf{B} = 0$ involution
 - consider non-conforming FEs

Thank you for your attention!

References

- C.A.J. Fletcher, The group finite element formulation. CMAME 1983, 37(2), pp. 225–244.
- D. Kuzmin, Explicit and implicit FEM-FCT algorithms with flux linearization. JCP 2009, 228(7), pp. 2517–2534.
- S.T. Zalesak, Fully multidimensional flux-corrected transport algorithms for fluids. JCP 1979, 31(3), pp. 335–362.
- D. Kuzmin, M. M, J.N. Shadid, M. Shashkov, Failsafe flux limiting and constrained data projections for equations of gas dynamics. JCP 2010, 229(23), pp. 8766–8779.
- P.R. Woodward, P. Colella, The numerical simulation of two-dimensional fluid flow with strong shocks. JCP 54, 115 (1984), pp. 115–173
- J.W. Banks, J.N. Shadid, An Euler system source term that develops prototype Z-pinch implosions intended for the evaluation of shock-hydro methods. IJNMF 2009, 61(7), pp. 725–751.
- P. Cargo, G. Gallice, Roe matrices for ideal MHD and systematic construction of Roe matrices for systems of conservation laws. JCP 1997, 136(2), pp.446–466.

⁵S. Zalesak, JCP 1979, 31(3), pp. 335–362

⁵S. Zalesak, JCP 1979, 31(3), pp. 335–362

Compute nodal correction factors $R_i^+ = \min\{1, Q_i^+/P_i^+\} \text{ and } R_i^- = \min\{1, Q_i^-/P_i^-\}$

⁵S. Zalesak, JCP 1979, 31(3), pp. 335–362

- Compute nodal correction factors $R_i^+ = \min\{1, Q_i^+/P_i^+\}$ and $R_i^- = \min\{1, Q_i^-/P_i^-\}$
- Limit antidiffusive flux for edge *ij* by

 $\alpha_{ij} = \left\{ \begin{array}{ll} \min\{R_i^+, R_j^-\} & \text{for positive fluxes} \\ \min\{R_i^-, R_j^+\} & \text{for negative fluxes} \end{array} \right.$

⁵S. Zalesak, JCP 1979, 31(3), pp. 335–362

Input: auxiliary solution u^L and antidiffusive fluxes f_{ij}^u , where $f_{ij}^u \neq f_{ij}^u$ **1** Sums of positive/negative antidiffusive fluxes into node i $P_i^+ = \sum_{i \neq i} \max\{0, f_{ij}^u\}, \qquad P_i^- = \sum_{i \neq i} \min\{0, f_{ij}^u\}$ 2 Upper/lower bounds based on the local extrema of u^L $Q_{i}^{+} = m_{i}(u_{i}^{\max} - u_{i}^{L}), \qquad Q_{i}^{-} = m_{i}(u_{i}^{\min} - u_{i}^{L})$ **3** Correction factors $\alpha_{ij}^u = \alpha_{ji}^u$ to satisfy the FCT constraints $\alpha_{ij}^{u} = \min\{R_{ij}, R_{ji}\}, \quad R_{ij} = \begin{cases} \min\{1, Q_i^+ / P_i^+\} & \text{if } f_{ij}^u \ge 0\\ \min\{1, Q_i^- / P_i^-\} & \text{if } f_{ij}^u < 0 \end{cases}$

Node-based transformation of control variables

Conservative variables: density, momentum, total energy

$$U_i = \left[\rho_i, (\rho \mathbf{v})_i, (\rho E)_i\right], \qquad F_{ij} = \left[f_{ij}^{\rho}, \mathbf{f}_{ij}^{\rho v}, f_{ij}^{\rho E}\right], \qquad F_{ji} = -F_{ij}$$

Primitive variables V = TU: density, velocity, pressure

$$V_i = \left[\rho_i, \mathbf{v}_i, p_i\right], \qquad \mathbf{v}_i = \frac{(\rho \mathbf{v})_i}{\rho_i}, \qquad p_i = (\gamma - 1) \left[(\rho E)_i - \frac{|(\rho \mathbf{v})_i|^2}{2\rho_i} \right]$$

$$G_{ij} = \left[f_{ij}^{\rho}, \mathbf{f}_{ij}^{v}, f_{ij}^{p}\right] = T(U_i)F_{ij}, \qquad T(U_j)F_{ji} = G_{ji} \neq -G_{ij}$$

Raw antidiffusive fluxes for the velocity and pressure

$$\mathbf{f}_{ij}^{\upsilon} = \frac{\mathbf{f}_{ij}^{\rho\upsilon} - \mathbf{v}_i f_{ij}^{\rho}}{\rho_i}, \qquad f_{ij}^p = (\gamma - 1) \left[\frac{|\mathbf{v}_i|^2}{2} f_{ij}^{\rho} - \mathbf{v}_i \cdot \mathbf{f}_{ij}^{\rho\upsilon} + f_{ij}^{\rho E} \right]$$