
| ⟩Lib : A Cross-Platform Programming Framework
for Quantum-Accelerated Scientific Computing
Quantum Computing Thematic Track at virtual ICCS 2020

Matthias Möller and Merel Schalkers

Department of Applied Mathematics (DIAM)
Centre for Engineering Education (4TU.CEE)
Delft University of Technology

Numerical Analysis group

2

Scientific Computing

3

𝜌
𝜕𝒖
𝜕𝑡 + 𝒖 ⋅ ∇𝒖 − ∇ ⋅ 𝜎 = 𝒇

∇ ⋅ 𝒖 = 0

Karman vortex street animation by V. Fuka (https://artax.karlin.mff.cuni.cz/~fukav1am/sqcyl.html)

Scientific Computing

§ Divide-and-conquer § Offloading

4

𝜌
𝜕𝒖
𝜕𝑡 + 𝒖 ⋅ ∇𝒖 − ∇ ⋅ 𝜎 = 𝒇

∇ ⋅ 𝒖 = 0

𝜌
𝜕𝒖
𝜕𝑡 + 𝒖 ⋅ ∇𝒖 − ∇ ⋅ 𝜎 = 𝒇

∇ ⋅ 𝒖 = 0

𝜌
𝜕𝒖
𝜕𝑡

+ 𝒖 ⋅ ∇𝒖 − ∇ ⋅ 𝜎 = 𝒇

∇ ⋅ 𝒖 = 0

𝜌
𝜕𝒖
𝜕𝑡

+ 𝒖 ⋅ ∇𝒖 − ∇ ⋅ 𝜎 = 𝒇

∇ ⋅ 𝒖 = 0

𝜌
𝜕𝒖
𝜕𝑡
+ 𝒖 ⋅ ∇𝒖 − ∇ ⋅ 𝜎 = 𝒇

∇ ⋅ 𝒖 = 0

Programming Models

5

C/C++
Fortran

OpenMP,
MPI, …

CUDA, HIP,
OpenCL, …

Programming Models

6

C/C++
Fortran

OpenMP,
MPI, …

CUDA, HIP,
OpenCL, …

AQASM, Circ, cQASM,
Forest, OpenQASM,

OpenQL, pyQuil, Qiskit,
QDK, QuEST, QX, …

Programming Models

7

C/C++
Fortran

OpenMP,
MPI, …

CUDA, HIP,
OpenCL, …

AQASM, Circ, cQASM,
Forest, OpenQASM,

OpenQL, pyQuil, Qiskit,
QDK, QuEST, QX, …Li

bK
et

Example: First Bell state

#include <LibKet.hpp>

// Create quantum expression
auto expr = cnot(h(sel<1>()),

sel<3>(init()));

// Select quantum device
QDevice<ibmq_london, 5> device;

// Populate quantum kernel
device(expr);

// Execute quantum job
auto job = device.execute_async(…, [stream]);

// Wait for job and retrieve result
auto result = job->get();

8

4 M. Möller and M. Schalkers

C and Python APIs are being implemented, which adopt just-in-time compila-
tion techniques to exploit the full potential of C++ template meta-programming
internally and expose |Lib〉’s functionality in C and Python-style to the outside.

A comprehensive overview of the |Lib〉 programming framework is given in
Fig. 1. It consists of three layers that provide components for application pro-
grammers (high-level (HL) API), quantum algorithm developers (mid-level (ML)
API), and QPU providers (low-level (LL) API), respectively.

HL Q-acceleration SDKs (C/C++, Python)

ML Q-expressions: algorithms and circuits

LL Q-abstraction: filters and gates

A
to

s
Q

LM

IB
M

Q

G
oo

gl
e

C
irq

Q
uT

ec
h

Q
I

R
ig

et
ti

Q
C
S

O
pe

nQ
L

Q
X

Q
uE

ST

Python engine C++ engine

Fig. 1. Overview of the cross-platform |Lib〉 programming framework.

Before we describe the different software layers in more detail we give a
short example on |Lib〉’s general usage. Consider the C++ code snippet given
in Listing 1 which puts the first and third qubit of a quantum register into the
maximally entangled first Bell state, where A is qubit 1 and B is qubit 3:

∣∣Φ+
〉

=
1√
2

(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B) =
|00〉AB + |11〉AB√

2
. (1)

The easiest way to achieve this is to start from the computational basis |0〉 and
apply a Hadamard gate to one qubit followed by a controlled-NOT (CNOT) gate

|0〉A H •

|0〉B

This is realized by the quantum expression that is constructed in lines 8–9
of the code snippet, thereby demonstrating two of |Lib〉’s most essential compo-
nents, namely, Quantum Filters and Quantum Gates, which are implemented in
the namespaces LibKet::filters and LibKet::gates, respectively.

As the name suggests, filters select a subset of the quantum register; see
Sect. 4.1 for more details. Here, sel< 1 >() selects the first qubit for applying
the Hadamard gate. This sub-expression serves as first argument, the control, to
the binary CNOT gate, whose action is applied to the third qubit (sel<3>(...)).
The init() gate puts all qubits of the quantum register into the computational

A
ut

ho
r

Pr
oo

f

Example: First Bell state

#include <LibKet.hpp>

// Create quantum expression
auto expr = cnot(h(sel<1>()),

sel<3>(init()));

// Select quantum device
QDevice<ibmq_london, 5> device;

// Populate quantum kernel
device(expr);

// Execute quantum job
auto job = device.execute_async(…, [stream]);

// Wait for job and retrieve result
auto result = job->get();

9

4 M. Möller and M. Schalkers

C and Python APIs are being implemented, which adopt just-in-time compila-
tion techniques to exploit the full potential of C++ template meta-programming
internally and expose |Lib〉’s functionality in C and Python-style to the outside.

A comprehensive overview of the |Lib〉 programming framework is given in
Fig. 1. It consists of three layers that provide components for application pro-
grammers (high-level (HL) API), quantum algorithm developers (mid-level (ML)
API), and QPU providers (low-level (LL) API), respectively.

HL Q-acceleration SDKs (C/C++, Python)

ML Q-expressions: algorithms and circuits

LL Q-abstraction: filters and gates

A
to

s
Q

LM

IB
M

Q

G
oo

gl
e

C
irq

Q
uT

ec
h

Q
I

R
ig

et
ti

Q
C
S

O
pe

nQ
L

Q
X

Q
uE

ST

Python engine C++ engine

Fig. 1. Overview of the cross-platform |Lib〉 programming framework.

Before we describe the different software layers in more detail we give a
short example on |Lib〉’s general usage. Consider the C++ code snippet given
in Listing 1 which puts the first and third qubit of a quantum register into the
maximally entangled first Bell state, where A is qubit 1 and B is qubit 3:

∣∣Φ+
〉

=
1√
2

(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B) =
|00〉AB + |11〉AB√

2
. (1)

The easiest way to achieve this is to start from the computational basis |0〉 and
apply a Hadamard gate to one qubit followed by a controlled-NOT (CNOT) gate

|0〉A H •

|0〉B

This is realized by the quantum expression that is constructed in lines 8–9
of the code snippet, thereby demonstrating two of |Lib〉’s most essential compo-
nents, namely, Quantum Filters and Quantum Gates, which are implemented in
the namespaces LibKet::filters and LibKet::gates, respectively.

As the name suggests, filters select a subset of the quantum register; see
Sect. 4.1 for more details. Here, sel< 1 >() selects the first qubit for applying
the Hadamard gate. This sub-expression serves as first argument, the control, to
the binary CNOT gate, whose action is applied to the third qubit (sel<3>(...)).
The init() gate puts all qubits of the quantum register into the computational

A
ut

ho
r

Pr
oo

f

Example: First Bell state

#include <LibKet.hpp>

// Create quantum expression
auto expr = cnot(h(sel<1>()),

sel<3>(init()));

// Select quantum device
QDevice<ibmq_london, 5> device;

// Populate quantum kernel
device(expr);

// Execute quantum job
auto job = device.execute_async(…, [stream]);

// Wait for job and retrieve result
auto result = job->get();

10

4 M. Möller and M. Schalkers

C and Python APIs are being implemented, which adopt just-in-time compila-
tion techniques to exploit the full potential of C++ template meta-programming
internally and expose |Lib〉’s functionality in C and Python-style to the outside.

A comprehensive overview of the |Lib〉 programming framework is given in
Fig. 1. It consists of three layers that provide components for application pro-
grammers (high-level (HL) API), quantum algorithm developers (mid-level (ML)
API), and QPU providers (low-level (LL) API), respectively.

HL Q-acceleration SDKs (C/C++, Python)

ML Q-expressions: algorithms and circuits

LL Q-abstraction: filters and gates

A
to

s
Q

LM

IB
M

Q

G
oo

gl
e

C
irq

Q
uT

ec
h

Q
I

R
ig

et
ti

Q
C
S

O
pe

nQ
L

Q
X

Q
uE

ST

Python engine C++ engine

Fig. 1. Overview of the cross-platform |Lib〉 programming framework.

Before we describe the different software layers in more detail we give a
short example on |Lib〉’s general usage. Consider the C++ code snippet given
in Listing 1 which puts the first and third qubit of a quantum register into the
maximally entangled first Bell state, where A is qubit 1 and B is qubit 3:

∣∣Φ+
〉

=
1√
2

(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B) =
|00〉AB + |11〉AB√

2
. (1)

The easiest way to achieve this is to start from the computational basis |0〉 and
apply a Hadamard gate to one qubit followed by a controlled-NOT (CNOT) gate

|0〉A H •

|0〉B

This is realized by the quantum expression that is constructed in lines 8–9
of the code snippet, thereby demonstrating two of |Lib〉’s most essential compo-
nents, namely, Quantum Filters and Quantum Gates, which are implemented in
the namespaces LibKet::filters and LibKet::gates, respectively.

As the name suggests, filters select a subset of the quantum register; see
Sect. 4.1 for more details. Here, sel< 1 >() selects the first qubit for applying
the Hadamard gate. This sub-expression serves as first argument, the control, to
the binary CNOT gate, whose action is applied to the third qubit (sel<3>(...)).
The init() gate puts all qubits of the quantum register into the computational

A
ut

ho
r

Pr
oo

f

Example: First Bell state

#include <LibKet.hpp>

// Create quantum expression
auto expr = cnot(h(sel<1>()),

sel<3>(init()));

// Select quantum device
QDevice<ibmq_london, 5> device;

// Populate quantum kernel
device(expr);

// Execute quantum job
auto job = device.execute_async(…, [stream]);

// Wait for job and retrieve result
auto result = job->get();

11

4 M. Möller and M. Schalkers

C and Python APIs are being implemented, which adopt just-in-time compila-
tion techniques to exploit the full potential of C++ template meta-programming
internally and expose |Lib〉’s functionality in C and Python-style to the outside.

A comprehensive overview of the |Lib〉 programming framework is given in
Fig. 1. It consists of three layers that provide components for application pro-
grammers (high-level (HL) API), quantum algorithm developers (mid-level (ML)
API), and QPU providers (low-level (LL) API), respectively.

HL Q-acceleration SDKs (C/C++, Python)

ML Q-expressions: algorithms and circuits

LL Q-abstraction: filters and gates

A
to

s
Q

LM

IB
M

Q

G
oo

gl
e

C
irq

Q
uT

ec
h

Q
I

R
ig

et
ti

Q
C
S

O
pe

nQ
L

Q
X

Q
uE

ST

Python engine C++ engine

Fig. 1. Overview of the cross-platform |Lib〉 programming framework.

Before we describe the different software layers in more detail we give a
short example on |Lib〉’s general usage. Consider the C++ code snippet given
in Listing 1 which puts the first and third qubit of a quantum register into the
maximally entangled first Bell state, where A is qubit 1 and B is qubit 3:

∣∣Φ+
〉

=
1√
2

(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B) =
|00〉AB + |11〉AB√

2
. (1)

The easiest way to achieve this is to start from the computational basis |0〉 and
apply a Hadamard gate to one qubit followed by a controlled-NOT (CNOT) gate

|0〉A H •

|0〉B

This is realized by the quantum expression that is constructed in lines 8–9
of the code snippet, thereby demonstrating two of |Lib〉’s most essential compo-
nents, namely, Quantum Filters and Quantum Gates, which are implemented in
the namespaces LibKet::filters and LibKet::gates, respectively.

As the name suggests, filters select a subset of the quantum register; see
Sect. 4.1 for more details. Here, sel< 1 >() selects the first qubit for applying
the Hadamard gate. This sub-expression serves as first argument, the control, to
the binary CNOT gate, whose action is applied to the third qubit (sel<3>(...)).
The init() gate puts all qubits of the quantum register into the computational

A
ut

ho
r

Pr
oo

f

Example: First Bell state

#include <LibKet.hpp>

// Create quantum expression
auto expr = cnot(h(sel<1>()),

sel<3>(init()));

// Select quantum device
QDevice<ibmq_london, 5> device;

// Populate quantum kernel
device(expr);

// Execute quantum job
auto job = device.execute_async(…, [stream]);

// Wait for job and retrieve result
auto result = job->get();

12

4 M. Möller and M. Schalkers

C and Python APIs are being implemented, which adopt just-in-time compila-
tion techniques to exploit the full potential of C++ template meta-programming
internally and expose |Lib〉’s functionality in C and Python-style to the outside.

A comprehensive overview of the |Lib〉 programming framework is given in
Fig. 1. It consists of three layers that provide components for application pro-
grammers (high-level (HL) API), quantum algorithm developers (mid-level (ML)
API), and QPU providers (low-level (LL) API), respectively.

HL Q-acceleration SDKs (C/C++, Python)

ML Q-expressions: algorithms and circuits

LL Q-abstraction: filters and gates

A
to

s
Q

LM

IB
M

Q

G
oo

gl
e

C
irq

Q
uT

ec
h

Q
I

R
ig

et
ti

Q
C
S

O
pe

nQ
L

Q
X

Q
uE

ST

Python engine C++ engine

Fig. 1. Overview of the cross-platform |Lib〉 programming framework.

Before we describe the different software layers in more detail we give a
short example on |Lib〉’s general usage. Consider the C++ code snippet given
in Listing 1 which puts the first and third qubit of a quantum register into the
maximally entangled first Bell state, where A is qubit 1 and B is qubit 3:

∣∣Φ+
〉

=
1√
2

(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B) =
|00〉AB + |11〉AB√

2
. (1)

The easiest way to achieve this is to start from the computational basis |0〉 and
apply a Hadamard gate to one qubit followed by a controlled-NOT (CNOT) gate

|0〉A H •

|0〉B

This is realized by the quantum expression that is constructed in lines 8–9
of the code snippet, thereby demonstrating two of |Lib〉’s most essential compo-
nents, namely, Quantum Filters and Quantum Gates, which are implemented in
the namespaces LibKet::filters and LibKet::gates, respectively.

As the name suggests, filters select a subset of the quantum register; see
Sect. 4.1 for more details. Here, sel< 1 >() selects the first qubit for applying
the Hadamard gate. This sub-expression serves as first argument, the control, to
the binary CNOT gate, whose action is applied to the third qubit (sel<3>(...)).
The init() gate puts all qubits of the quantum register into the computational

A
ut

ho
r

Pr
oo

f

6 M. Möller and M. Schalkers

customize the execution process, run multiple quantum kernels concurrently and
perform non-blocking asynchronous kernel execution are given in Sect. 4.5.

1 BinaryQGate
2 | gate = QCNOT
3 | filter = QFilterSelect [1 3]
4 | expr0 = UnaryQGate
5 | | gate = QHadamard
6 | | filter = QFilterSelect [1]
7 | | expr = QFilterSelect [1]
8 | expr1 = UnaryQGate
9 | | gate = QInit

10 | | filter = QFilterSelect [3]
11 | | expr = QFilter

1 version 1.0
2 qubits 6
3 h q[1]
4 cnot q[1], q[3]

000000 001010
0

0.2
0.4
0.6
0.8

1

0.49 0.52

Listing 2: AST of quantum expression (left), resulting QASM code (right-top),
and probability amplitudes computed by QuTech’s QI simulator (right-bottom).

4 Implementation Details

In what follows, we address the individual |Lib〉 components and shed some light
on their internal realization and ways to extend them to support new backends.

4.1 Quantum Filter Chains

As stated before, |Lib〉’s quantum filters are meant to select subsets of qubits
from the global quantum register to which the following quantum operation is
being applied, which is comparable to matrix views in the Eigen library [8].

Since today’s and near-future quantum processors have a very limited number
of qubits, typically, between 5–50, we consider the assumption of a single global
quantum register and the absence of dynamic memory (de)allocation capabilities
most practical. Moreover, quantum computing follows the in-memory computing
paradigm, that is, data is stored and manipulated at fixed locations in memory.
This is in contrast to the classical von-Neuman computer architecture, where
data is transported between the randomly accessible main memory (RAM) and
the central processing unit (CPU), the latter performing the computations.

Table 1 lists all quantum filters supported by |Lib〉. All filtering operations
are applied relative to the given input, which makes it possible combine mul-
tiple filters to so-called filter chains. Consider, for instance, the filter chain
qubit<2>(shift<2>(range<2, 5>())), which selects the 6-th qubit from the
global register, more precisely, the pre-selected set of qubits passed as input.

Thanks to the use of C++ template meta-programming techniques, quan-
tum filters are evaluated at compile time and, hence, even complex filter chains
cause no overhead costs at run time. With the aid of gototag<Tag>() it is
possible to restore a previously stored filter configuration that has been tagged

A
ut

ho
r

Pr
oo

f

Abstract syntax tree of the quantum expression

Example: First Bell state

#include <LibKet.hpp>

// Create quantum expression
auto expr = cnot(h(sel<1>()),

sel<3>(init()));

// Select quantum device
QDevice<ibmq_london, 5> device;

// Populate quantum kernel
device(expr);

// Execute quantum job
auto job = device.execute_async(…, [stream]);

// Wait for job and retrieve result
auto result = job->get();

13

4 M. Möller and M. Schalkers

C and Python APIs are being implemented, which adopt just-in-time compila-
tion techniques to exploit the full potential of C++ template meta-programming
internally and expose |Lib〉’s functionality in C and Python-style to the outside.

A comprehensive overview of the |Lib〉 programming framework is given in
Fig. 1. It consists of three layers that provide components for application pro-
grammers (high-level (HL) API), quantum algorithm developers (mid-level (ML)
API), and QPU providers (low-level (LL) API), respectively.

HL Q-acceleration SDKs (C/C++, Python)

ML Q-expressions: algorithms and circuits

LL Q-abstraction: filters and gates

A
to

s
Q

LM

IB
M

Q

G
oo

gl
e

C
irq

Q
uT

ec
h

Q
I

R
ig

et
ti

Q
C
S

O
pe

nQ
L

Q
X

Q
uE

ST

Python engine C++ engine

Fig. 1. Overview of the cross-platform |Lib〉 programming framework.

Before we describe the different software layers in more detail we give a
short example on |Lib〉’s general usage. Consider the C++ code snippet given
in Listing 1 which puts the first and third qubit of a quantum register into the
maximally entangled first Bell state, where A is qubit 1 and B is qubit 3:

∣∣Φ+
〉

=
1√
2

(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B) =
|00〉AB + |11〉AB√

2
. (1)

The easiest way to achieve this is to start from the computational basis |0〉 and
apply a Hadamard gate to one qubit followed by a controlled-NOT (CNOT) gate

|0〉A H •

|0〉B

This is realized by the quantum expression that is constructed in lines 8–9
of the code snippet, thereby demonstrating two of |Lib〉’s most essential compo-
nents, namely, Quantum Filters and Quantum Gates, which are implemented in
the namespaces LibKet::filters and LibKet::gates, respectively.

As the name suggests, filters select a subset of the quantum register; see
Sect. 4.1 for more details. Here, sel< 1 >() selects the first qubit for applying
the Hadamard gate. This sub-expression serves as first argument, the control, to
the binary CNOT gate, whose action is applied to the third qubit (sel<3>(...)).
The init() gate puts all qubits of the quantum register into the computational

A
ut

ho
r

Pr
oo

f

OPENQASM 2.0;
include "qelib1.inc";
qreg q[5];
creg c[5];
h q[1];
cnot q[1], q[3];

OpenQASM kernel

Example: First Bell state

#include <LibKet.hpp>

// Create quantum expression
auto expr = cnot(h(sel<1>()),

sel<3>(init()));

// Select quantum device
QDevice<ibmq_london, 5> device;

// Populate quantum kernel
device(expr);

// Execute quantum job
auto job = device.execute_async(…, [stream]);

// Wait for job and retrieve result
auto result = job->get();

14

4 M. Möller and M. Schalkers

C and Python APIs are being implemented, which adopt just-in-time compila-
tion techniques to exploit the full potential of C++ template meta-programming
internally and expose |Lib〉’s functionality in C and Python-style to the outside.

A comprehensive overview of the |Lib〉 programming framework is given in
Fig. 1. It consists of three layers that provide components for application pro-
grammers (high-level (HL) API), quantum algorithm developers (mid-level (ML)
API), and QPU providers (low-level (LL) API), respectively.

HL Q-acceleration SDKs (C/C++, Python)

ML Q-expressions: algorithms and circuits

LL Q-abstraction: filters and gates

A
to

s
Q

LM

IB
M

Q

G
oo

gl
e

C
irq

Q
uT

ec
h

Q
I

R
ig

et
ti

Q
C
S

O
pe

nQ
L

Q
X

Q
uE

ST

Python engine C++ engine

Fig. 1. Overview of the cross-platform |Lib〉 programming framework.

Before we describe the different software layers in more detail we give a
short example on |Lib〉’s general usage. Consider the C++ code snippet given
in Listing 1 which puts the first and third qubit of a quantum register into the
maximally entangled first Bell state, where A is qubit 1 and B is qubit 3:

∣∣Φ+
〉

=
1√
2

(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B) =
|00〉AB + |11〉AB√

2
. (1)

The easiest way to achieve this is to start from the computational basis |0〉 and
apply a Hadamard gate to one qubit followed by a controlled-NOT (CNOT) gate

|0〉A H •

|0〉B

This is realized by the quantum expression that is constructed in lines 8–9
of the code snippet, thereby demonstrating two of |Lib〉’s most essential compo-
nents, namely, Quantum Filters and Quantum Gates, which are implemented in
the namespaces LibKet::filters and LibKet::gates, respectively.

As the name suggests, filters select a subset of the quantum register; see
Sect. 4.1 for more details. Here, sel< 1 >() selects the first qubit for applying
the Hadamard gate. This sub-expression serves as first argument, the control, to
the binary CNOT gate, whose action is applied to the third qubit (sel<3>(...)).
The init() gate puts all qubits of the quantum register into the computational

A
ut

ho
r

Pr
oo

f
C++ thread

Embedded Python
Interpreter

Qiskit

Example: First Bell state

#include <LibKet.hpp>

// Create quantum expression
auto expr = cnot(h(sel<1>()),

sel<3>(init()));

// Select quantum device
QDevice<ibmq_london, 5> device;

// Populate quantum kernel
device(expr);

// Execute quantum job
auto job = device.execute_async(…, [stream]);

// Wait for job and retrieve result
auto result = job->get();

15

4 M. Möller and M. Schalkers

C and Python APIs are being implemented, which adopt just-in-time compila-
tion techniques to exploit the full potential of C++ template meta-programming
internally and expose |Lib〉’s functionality in C and Python-style to the outside.

A comprehensive overview of the |Lib〉 programming framework is given in
Fig. 1. It consists of three layers that provide components for application pro-
grammers (high-level (HL) API), quantum algorithm developers (mid-level (ML)
API), and QPU providers (low-level (LL) API), respectively.

HL Q-acceleration SDKs (C/C++, Python)

ML Q-expressions: algorithms and circuits

LL Q-abstraction: filters and gates

A
to

s
Q

LM

IB
M

Q

G
oo

gl
e

C
irq

Q
uT

ec
h

Q
I

R
ig

et
ti

Q
C
S

O
pe

nQ
L

Q
X

Q
uE

ST

Python engine C++ engine

Fig. 1. Overview of the cross-platform |Lib〉 programming framework.

Before we describe the different software layers in more detail we give a
short example on |Lib〉’s general usage. Consider the C++ code snippet given
in Listing 1 which puts the first and third qubit of a quantum register into the
maximally entangled first Bell state, where A is qubit 1 and B is qubit 3:

∣∣Φ+
〉

=
1√
2

(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B) =
|00〉AB + |11〉AB√

2
. (1)

The easiest way to achieve this is to start from the computational basis |0〉 and
apply a Hadamard gate to one qubit followed by a controlled-NOT (CNOT) gate

|0〉A H •

|0〉B

This is realized by the quantum expression that is constructed in lines 8–9
of the code snippet, thereby demonstrating two of |Lib〉’s most essential compo-
nents, namely, Quantum Filters and Quantum Gates, which are implemented in
the namespaces LibKet::filters and LibKet::gates, respectively.

As the name suggests, filters select a subset of the quantum register; see
Sect. 4.1 for more details. Here, sel< 1 >() selects the first qubit for applying
the Hadamard gate. This sub-expression serves as first argument, the control, to
the binary CNOT gate, whose action is applied to the third qubit (sel<3>(...)).
The init() gate puts all qubits of the quantum register into the computational

A
ut

ho
r

Pr
oo

f
C++ thread

Embedded Python
Interpreter

Qiskit

10 M. Möller and M. Schalkers

Lines 15 and 18 of Listing 1 create a device instance for running the quantum
algorithm remotely on the Quantum-Inspire simulator platform and populate its
internal quantum kernel with the expression given by Eq. (1) for creating the first
Bell state, respectively. Next to providing methods for executing the kernel as
described in the next section, some device types support extra functionality such
as the transpilation of the generic quantum circuit into device-optimized quan-
tum instructions and the export of the resulting circuit to LATEX. The quantum
circuits depicted in Fig. 2 were produced by the following code snippet

1 QDevice<QDeviceType::ibmq_london_simulator, 2> ibmq;
2 QDevice<QDeviceType::cirq_foxtail_simulator, 2> cirq;
3 ibmq(expr); std::cout << ibmq.to_latex() << std::endl;
4 cirq(expr); std::cout << cirq.to_latex() << std::endl;

We consider this functionality helpful for getting a better understanding of
the actual circuit – possibly with extra swap gates added to enable two-qubit
operations on non-neighboring qubits – that is executed on the device rather
than its idealized textbook version. The transpilation step can be bypassed by
choosing generic simulators such as ibmq qasm simulator and cirq simulator.

(a) Quantum circuit transpiled for IBM’s 5-qubit London chip

q0 !→ 0 : |0〉 U2 (0, π) •
q1 !→ 1 : |0〉

ancilla0 !→ 2 : |0〉
ancilla1 !→ 3 : |0〉
ancilla2 !→ 4 : |0〉

c0 : 0

c1 : 0

(b) Quantum circuit transpiled for Google’s 22-qubit Foxtail chip

(0, 0) PhX(0.5)0.5 •

(1, 0) PhX(-0.5)0.5 • PhX(-0.5)0.5

Fig. 2. Quantum circuits for producing the first Bell state, cf. Eq. (1), optimized for
(a) IBM’s 5-qubit London chip and (b) Google’s 22-qubit Foxtail chip.

4.5 Quantum Kernel Execution

Once the generic expression has been synthesized into device-dependent instruc-
tions it can be executed on the respective QPU device. As explained before, our

A
ut

ho
r

Pr
oo

f

Transpiled circuit for IBM Q

Example: First Bell state

#include <LibKet.hpp>

// Create quantum expression
auto expr = cnot(h(sel<1>()),

sel<3>(init()));

// Select quantum device
QDevice<ibmq_london, 5> device;

// Populate quantum kernel
device(expr);

// Execute quantum job
auto job = device.execute_async(…, [stream]);

// Do other stuff while waiting

// Wait for job and retrieve result
auto result = job->get(); 16

4 M. Möller and M. Schalkers

C and Python APIs are being implemented, which adopt just-in-time compila-
tion techniques to exploit the full potential of C++ template meta-programming
internally and expose |Lib〉’s functionality in C and Python-style to the outside.

A comprehensive overview of the |Lib〉 programming framework is given in
Fig. 1. It consists of three layers that provide components for application pro-
grammers (high-level (HL) API), quantum algorithm developers (mid-level (ML)
API), and QPU providers (low-level (LL) API), respectively.

HL Q-acceleration SDKs (C/C++, Python)

ML Q-expressions: algorithms and circuits

LL Q-abstraction: filters and gates

A
to

s
Q

LM

IB
M

Q

G
oo

gl
e

C
irq

Q
uT

ec
h

Q
I

R
ig

et
ti

Q
C
S

O
pe

nQ
L

Q
X

Q
uE

ST

Python engine C++ engine

Fig. 1. Overview of the cross-platform |Lib〉 programming framework.

Before we describe the different software layers in more detail we give a
short example on |Lib〉’s general usage. Consider the C++ code snippet given
in Listing 1 which puts the first and third qubit of a quantum register into the
maximally entangled first Bell state, where A is qubit 1 and B is qubit 3:

∣∣Φ+
〉

=
1√
2

(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B) =
|00〉AB + |11〉AB√

2
. (1)

The easiest way to achieve this is to start from the computational basis |0〉 and
apply a Hadamard gate to one qubit followed by a controlled-NOT (CNOT) gate

|0〉A H •

|0〉B

This is realized by the quantum expression that is constructed in lines 8–9
of the code snippet, thereby demonstrating two of |Lib〉’s most essential compo-
nents, namely, Quantum Filters and Quantum Gates, which are implemented in
the namespaces LibKet::filters and LibKet::gates, respectively.

As the name suggests, filters select a subset of the quantum register; see
Sect. 4.1 for more details. Here, sel< 1 >() selects the first qubit for applying
the Hadamard gate. This sub-expression serves as first argument, the control, to
the binary CNOT gate, whose action is applied to the third qubit (sel<3>(...)).
The init() gate puts all qubits of the quantum register into the computational

A
ut

ho
r

Pr
oo

f

Example: First Bell state

#include <LibKet.hpp>

// Create quantum expression
auto expr = cnot(h(sel<1>()),

sel<3>(init()));

// Select quantum device
QDevice<ibmq_london, 5> device;

// Populate quantum kernel
device(expr);

// Execute quantum job
auto job = device.execute_async(…, [stream]);

// Do other stuff while waiting

// Wait for job and retrieve result
auto result = job->get(); 17

4 M. Möller and M. Schalkers

C and Python APIs are being implemented, which adopt just-in-time compila-
tion techniques to exploit the full potential of C++ template meta-programming
internally and expose |Lib〉’s functionality in C and Python-style to the outside.

A comprehensive overview of the |Lib〉 programming framework is given in
Fig. 1. It consists of three layers that provide components for application pro-
grammers (high-level (HL) API), quantum algorithm developers (mid-level (ML)
API), and QPU providers (low-level (LL) API), respectively.

HL Q-acceleration SDKs (C/C++, Python)

ML Q-expressions: algorithms and circuits

LL Q-abstraction: filters and gates

A
to

s
Q

LM

IB
M

Q

G
oo

gl
e

C
irq

Q
uT

ec
h

Q
I

R
ig

et
ti

Q
C
S

O
pe

nQ
L

Q
X

Q
uE

ST

Python engine C++ engine

Fig. 1. Overview of the cross-platform |Lib〉 programming framework.

Before we describe the different software layers in more detail we give a
short example on |Lib〉’s general usage. Consider the C++ code snippet given
in Listing 1 which puts the first and third qubit of a quantum register into the
maximally entangled first Bell state, where A is qubit 1 and B is qubit 3:

∣∣Φ+
〉

=
1√
2

(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B) =
|00〉AB + |11〉AB√

2
. (1)

The easiest way to achieve this is to start from the computational basis |0〉 and
apply a Hadamard gate to one qubit followed by a controlled-NOT (CNOT) gate

|0〉A H •

|0〉B

This is realized by the quantum expression that is constructed in lines 8–9
of the code snippet, thereby demonstrating two of |Lib〉’s most essential compo-
nents, namely, Quantum Filters and Quantum Gates, which are implemented in
the namespaces LibKet::filters and LibKet::gates, respectively.

As the name suggests, filters select a subset of the quantum register; see
Sect. 4.1 for more details. Here, sel< 1 >() selects the first qubit for applying
the Hadamard gate. This sub-expression serves as first argument, the control, to
the binary CNOT gate, whose action is applied to the third qubit (sel<3>(...)).
The init() gate puts all qubits of the quantum register into the computational

A
ut

ho
r

Pr
oo

f

6 M. Möller and M. Schalkers

customize the execution process, run multiple quantum kernels concurrently and
perform non-blocking asynchronous kernel execution are given in Sect. 4.5.

1 BinaryQGate
2 | gate = QCNOT
3 | filter = QFilterSelect [1 3]
4 | expr0 = UnaryQGate
5 | | gate = QHadamard
6 | | filter = QFilterSelect [1]
7 | | expr = QFilterSelect [1]
8 | expr1 = UnaryQGate
9 | | gate = QInit

10 | | filter = QFilterSelect [3]
11 | | expr = QFilter

1 version 1.0
2 qubits 6
3 h q[1]
4 cnot q[1], q[3]

000000 001010
0

0.2
0.4
0.6
0.8

1

0.49 0.52

Listing 2: AST of quantum expression (left), resulting QASM code (right-top),
and probability amplitudes computed by QuTech’s QI simulator (right-bottom).

4 Implementation Details

In what follows, we address the individual |Lib〉 components and shed some light
on their internal realization and ways to extend them to support new backends.

4.1 Quantum Filter Chains

As stated before, |Lib〉’s quantum filters are meant to select subsets of qubits
from the global quantum register to which the following quantum operation is
being applied, which is comparable to matrix views in the Eigen library [8].

Since today’s and near-future quantum processors have a very limited number
of qubits, typically, between 5–50, we consider the assumption of a single global
quantum register and the absence of dynamic memory (de)allocation capabilities
most practical. Moreover, quantum computing follows the in-memory computing
paradigm, that is, data is stored and manipulated at fixed locations in memory.
This is in contrast to the classical von-Neuman computer architecture, where
data is transported between the randomly accessible main memory (RAM) and
the central processing unit (CPU), the latter performing the computations.

Table 1 lists all quantum filters supported by |Lib〉. All filtering operations
are applied relative to the given input, which makes it possible combine mul-
tiple filters to so-called filter chains. Consider, for instance, the filter chain
qubit<2>(shift<2>(range<2, 5>())), which selects the 6-th qubit from the
global register, more precisely, the pre-selected set of qubits passed as input.

Thanks to the use of C++ template meta-programming techniques, quan-
tum filters are evaluated at compile time and, hence, even complex filter chains
cause no overhead costs at run time. With the aid of gototag<Tag>() it is
possible to restore a previously stored filter configuration that has been tagged

A
ut

ho
r

Pr
oo

f

Kwantum expression template Library

18

ML

LL

HL

Q-abstraction: filters and gates

Q-expressions: algorithms and circuits

Q-acceleration SDKs (C, C++, Python)

Python

At
os

 Q
LM

IB
M

 Q

R
ig

et
ti

Q
C

S

G
oo

gl
e

C
irc

Q
uT

ec
h

Q
I

C++

O
pe

nQ
L

Q
X

Q
uE

ST

Kwantum expression template Library

19

ML

LL

HL

Q-abstraction: filters and gates

Q-expressions: algorithms and circuits

Q-acceleration SDKs (C, C++, Python)

Python

At
os

 Q
LM

IB
M

 Q

R
ig

et
ti

Q
C

S

G
oo

gl
e

C
irc

Q
uT

ec
h

Q
I

C++

O
pe

nQ
L

Q
X

Q
uE

ST

Kwantum expression template Library

20

ML

LL

HL

Q-abstraction: filters and gates

Q-expressions: algorithms and circuits

Q-acceleration SDKs (C, C++, Python)

Python

At
os

 Q
LM

IB
M

 Q

R
ig

et
ti

Q
C

S

G
oo

gl
e

C
irc

Q
uT

ec
h

Q
I

C++

O
pe

nQ
L

Q
X

Q
uE

ST

Julia Q#

Q
D

K

Ya
o.

jl

Kwantum expression template Library

21

ML

LL

HL

Q-abstraction: filters and gates

Q-expressions: algorithms and circuits

Q-acceleration SDKs (C, C++, Python)

Python

At
os

 Q
LM

IB
M

 Q

R
ig

et
ti

Q
C

S

G
oo

gl
e

C
irc

Q
uT

ec
h

Q
I

C++

O
pe

nQ
L

Q
X

Q
uE

ST

Julia Q#

Q
D

K

Ya
o.

jl

Kwantum expression template Library

22

ML

LL

HL

Q-abstraction: filters and gates

Q-expressions: algorithms and circuits

Q-acceleration SDKs (C, C++, Python)

Python

At
os

 Q
LM

IB
M

 Q

R
ig

et
ti

Q
C

S

G
oo

gl
e

C
irc

Q
uT

ec
h

Q
I

C++

O
pe

nQ
L

Q
X

Q
uE

ST

Julia Q#

Q
D

K

Ya
o.

jl

Filters – views on the global Q-memory

§ Starting from the full Q-memory
filters restrict qubits step by step

auto f0 = select<0,2,3>();

23

Q-Device

q0 q1 q2 q3 q4

Filters – views on the global Q-memory

§ Starting from the full Q-memory
filters restrict qubits step by step

auto f0 = select<0,2,3>();
auto f1 = range<1,2>(f0);

24

Q-Device

q0 q1 q2 q3 q4

Filters – views on the global Q-memory

§ Starting from the full Q-memory
filters restrict qubits step by step

auto f0 = select<0,2,3>();
auto f1 = range<1,2>(f0);
auto f2 = tag<0>(f1);

25

Q-Device

q0 q1 q2 q3 q4

q2 q3tag #0

Filters – views on the global Q-memory

§ Starting from the full Q-memory
filters restrict qubits step by step

auto f0 = select<0,2,3>();
auto f1 = range<1,2>(f0);
auto f2 = tag<0>(f1);
auto f3 = qubit<1>(f2);

26

Q-Device

q0 q1 q2 q3 q4

q2 q3tag #0

Filters – views on the global Q-memory

§ Starting from the full Q-memory
filters restrict qubits step by step

auto f0 = select<0,2,3>();
auto f1 = range<1,2>(f0);
auto f2 = tag<0>(f1);
auto f3 = qubit<1>(f2);
auto f4 = tag<1>(f3);

27

Q-Device

q0 q1 q2 q3 q4

q2 q3tag #0

tag #1 q3

Filters – views on the global Q-memory

§ Starting from the full Q-memory
filters restrict qubits step by step

auto f0 = select<0,2,3>();
auto f1 = range<1,2>(f0);
auto f2 = tag<0>(f1);
auto f3 = qubit<1>(f2);
auto f4 = tag<1>(f3);
auto f5 = gototag<0>(f4);

28

Q-Device

q0 q1 q2 q3 q4

q2 q3tag #0

tag #1 q3

Filters – views on the global Q-memory

§ Starting from the full Q-memory
filters restrict qubits step by step

auto f0 = select<0,2,3>();
auto f1 = range<1,2>(f0);
auto f2 = tag<0>(f1);
auto f3 = qubit<1>(f2);
auto f4 = tag<1>(f3);
auto f5 = gototag<0>(f4);
auto f6 = gototag<1>(f5);

29

Q-Device

q0 q1 q2 q3 q4

q2 q3tag #0

tag #1 q3

Gates – SIMD-ops

§ Gates apply to all qubits of the
current filter chain (SIMD-ops)

auto e0 = init();

30

q1

q0

q2

q3

q4

Gates – SIMD-ops

§ Gates apply to all qubits of the
current filter chain (SIMD-ops)

auto e0 = init();
auto e1 = sel<0,2>(e0);

q1

q0

q2

q3

q4

Gates – SIMD-ops

§ Gates apply to all qubits of the
current filter chain (SIMD-ops)

auto e0 = init();
auto e1 = sel<0,2>(e0);
auto e2 = h(e1);

q1

q0

q2

q3

q4

H

H

Gates – SIMD-ops

§ Gates apply to all qubits of the
current filter chain (SIMD-ops)

auto e0 = init();
auto e1 = sel<0,2>(e0);
auto e2 = h(e1);
auto e3 = all(e2);

q1

q0

q2

q3

q4

H

H

Gates – SIMD-ops

§ Gates apply to all qubits of the
current filter chain (SIMD-ops)

auto e0 = init();
auto e1 = sel<0,2>(e0);
auto e2 = h(e1);
auto e3 = all(e2);
auto e4 = cnot(

sel<0,2>(),
sel<1,4>(e3)

);

34

q1

q0

q2

q3

q4

H

H

X

X

Gates – SIMD-ops

§ Gates apply to all qubits of the
current filter chain (SIMD-ops)

auto e0 = init();
auto e1 = sel<0,2>(e0);
auto e2 = h(e1);
auto e3 = all(e2);
auto e4 = cnot(

sel<0,2>(),
sel<1,4>(e3)

);
auto e5 = measure(all(e4));

35

q1

q0

q2

q3

q4

H

H

X

X

M

M

M

M

M

Circuits – pre-cooked quantum building blocks

§ Generic algorithms that can be applied to registers of arbitrary size n

auto expr = qft(range<0,n>(init()));

36

Animation created with Quirk https://algassert.com/quirk

Example: n-qubit QFT benchmark

§ Execute n-qubit QFT for n=1..12 on different quantum simulators

37

12 M. Möller and M. Schalkers

desired information. For widely used data such as job identifier and duration, his-
togram of results, and the state with highest likelihood, each QDevice class spe-
cialization provides functionality to extract information from the JSON object
and convert it into |Lib〉-specific or intrinsic C++ types, e.g.

1 auto duration = ibmq.get<QResultType::duration >(result);
2 auto histogram = ibmq.get<QResultType::histogram>(result);

Let us finally remark that |Lib〉 also supports the native execution of quan-
tum kernels written in C++, e.g., for quantum simulators like QX [13] and
QuEST [11], using the multithreading capabilities that come with C++ 11.

5 Demonstration

|Lib〉 is a rather young project that is under continuous development. The correct
functioning of the core framework described in this paper has been verified by
extensive unit tests. A comprehensive presentation of computational examples is
beyond the scope of this paper and not possible within the given page limit. We
therefore restrict ourselves to a single test case, namely, the quantum expression
qft(init()) and apply it to a quantum register consisting of 1–12 qubits as a
first benchmark to measure the performance of different QPU backends.

Figure 3 depicts the run times measured for the following QPU backends:
Cirq [6] (v0.7.0, generic simulator), pyQuil [21] (v2.19.0, 9q-square-simulator),
QI [13] (v1.1.0), Qiskit [1] (v.0.17.0, qasm-simulator), and QuEST [11] (v3.1.1,
CPU-OpenMP simulator). All runs were performed with 1024 shots on a dual-
socket Intel Xeon E5-2687W Sandy Bridge EP system with 2 × 8 cores running
at 3.1 GHz with 128 GB of DDR3-1600 memory except for the QI runs, which
were executed on a remote system with unknown hardware specification.

Cirq QI QiskitpyQuil QuEST
10−5

10−4

10−3

10−2

R
un

ti
m

e
fo

r
si

ng
le

sh
ot

[s
ec

]

Fig. 3. Run times for the Quantum Fourier transformation executed with 1–12 qubits
(per group from left to right) on five different QPU simulator backends.

A
ut

ho
r

Pr
oo

f

Example: n-qubit QFT benchmark

§ Execute n-qubit QFT for n=1..12 on different quantum simulators

38

12 M. Möller and M. Schalkers

desired information. For widely used data such as job identifier and duration, his-
togram of results, and the state with highest likelihood, each QDevice class spe-
cialization provides functionality to extract information from the JSON object
and convert it into |Lib〉-specific or intrinsic C++ types, e.g.

1 auto duration = ibmq.get<QResultType::duration >(result);
2 auto histogram = ibmq.get<QResultType::histogram>(result);

Let us finally remark that |Lib〉 also supports the native execution of quan-
tum kernels written in C++, e.g., for quantum simulators like QX [13] and
QuEST [11], using the multithreading capabilities that come with C++ 11.

5 Demonstration

|Lib〉 is a rather young project that is under continuous development. The correct
functioning of the core framework described in this paper has been verified by
extensive unit tests. A comprehensive presentation of computational examples is
beyond the scope of this paper and not possible within the given page limit. We
therefore restrict ourselves to a single test case, namely, the quantum expression
qft(init()) and apply it to a quantum register consisting of 1–12 qubits as a
first benchmark to measure the performance of different QPU backends.

Figure 3 depicts the run times measured for the following QPU backends:
Cirq [6] (v0.7.0, generic simulator), pyQuil [21] (v2.19.0, 9q-square-simulator),
QI [13] (v1.1.0), Qiskit [1] (v.0.17.0, qasm-simulator), and QuEST [11] (v3.1.1,
CPU-OpenMP simulator). All runs were performed with 1024 shots on a dual-
socket Intel Xeon E5-2687W Sandy Bridge EP system with 2 × 8 cores running
at 3.1 GHz with 128 GB of DDR3-1600 memory except for the QI runs, which
were executed on a remote system with unknown hardware specification.

Cirq QI QiskitpyQuil QuEST
10−5

10−4

10−3

10−2

R
un

ti
m

e
fo

r
si

ng
le

sh
ot

[s
ec

]

Fig. 3. Run times for the Quantum Fourier transformation executed with 1–12 qubits
(per group from left to right) on five different QPU simulator backends.

A
ut

ho
r

Pr
oo

f

version 1.0
qubits 6
h q[0]
cr q[1], q[0], 1.570796326794896558
cr q[2], q[0], 0.785398163397448279
cr q[3], q[0], 0.392699081698724139
cr q[4], q[0], 0.196349540849362070
cr q[5], q[0], 0.098174770424681035
h q[1]
cr q[2], q[1], 1.570796326794896558
cr q[3], q[1], 0.785398163397448279
cr q[4], q[1], 0.392699081698724139
cr q[5], q[1], 0.196349540849362070
h q[2]
cr q[3], q[2], 1.570796326794896558
cr q[4], q[2], 0.785398163397448279
cr q[5], q[2], 0.392699081698724139
h q[3]
cr q[4], q[3], 1.570796326794896558
cr q[5], q[3], 0.785398163397448279
h q[4]
cr q[5], q[4], 1.570796326794896558
h q[5]
swap q[0], q[5]
swap q[1], q[4]
swap q[2], q[3]

OPENQASM 2.0;
include "qelib1.inc";
qreg q[6];
creg c[6];
h q[0];
cu1(1.570796326794896558) q[1], q[0];
cu1(0.785398163397448279) q[2], q[0];
cu1(0.392699081698724139) q[3], q[0];
cu1(0.196349540849362070) q[4], q[0];
cu1(0.098174770424681035) q[5], q[0];
h q[1];
cu1(1.570796326794896558) q[2], q[1];
cu1(0.785398163397448279) q[3], q[1];
cu1(0.392699081698724139) q[4], q[1];
cu1(0.196349540849362070) q[5], q[1];
h q[2];
cu1(1.570796326794896558) q[3], q[2];
cu1(0.785398163397448279) q[4], q[2];
cu1(0.392699081698724139) q[5], q[2];
h q[3];
cu1(1.570796326794896558) q[4], q[3];
cu1(0.785398163397448279) q[5], q[3];
h q[4];
cu1(1.570796326794896558) q[5], q[4];
h q[5];
swap q[0], q[5];
swap q[1], q[4];
swap q[2], q[3];

Advanced features

§ Rule-based optimization
𝑈 ∘ 𝑈! = 𝑈! ∘ 𝑈 = 𝑖𝑑

§ Compile-time for loops
auto expr = static_for<begin,end,step,ftor_body>(…)

§ User-definable gates
QFunctor_alias(Bell, cnot(h(sel<1>()),sel<3>(init())));
auto expr = hook<Bell>(…)

§ Just-in-time compilation of string expressions
device(“cnot(h(sel<1>()),sel<3>(init()))”);

39

Conclusion

| ⟩Lib : A Cross-Platform Programming Framework for Quantum-Accelerated
Scientific Computing, https://doi.org/10.1007/978-3-030-50433-5_35

§ Rapid prototyping and testing of QAs from quantum expression templates
§ Seamless integration of QAs into classical scientific computing applications
§ Support for Atos, Circ, IBMQ, QX, Quantum Inspire, QuEST, Rigetti, …
§ C++14 header-only library with unified C and Python API

Acknowledgements
§ Kelvin Loh and Richard Versluis (TNO)
§ TNO and 4TU.CEE for financial support

40

