High-order isogeometric methods: Curse or blessing?

Matthias Möller ${ }^{\text {a }}$

Joint work with R. Tielen ${ }^{\text {a }}$, J. Liu ${ }^{\text {a, },}$,
H. Schuttelaars ${ }^{\text {a }}$, K. Vuik ${ }^{\text {a }}$, D. Göddeke ${ }^{b}$

${ }^{a}$ Delft University of Technology, DIAM
${ }^{b}$ University of Stuttgart, IANS

INdAM: Geometric Challenges in Isogeometric Analysis
Rome, January 31, 2020

[^0]
Outline

- Part 1: Solution accuracy
[J. Liu]
- interplay of approximation and round-off error
- towards an a-posteriori hp-adaptation strategy
- Part 2: Solver efficiency
[R. Tielen]
- p-multigrid method with ILUT smoother
- discussion of choices and numerical examples
- Conclusion and outlook

Part 1: Solution accuracy

Model problem \#1

Poisson equation in bounded domain Ω with Lipschitz continuous boundary Γ with $f \in L_{2}(\Omega)$ and $h \in L_{2}\left(\Gamma_{N}\right)$:

$$
\begin{aligned}
-\Delta u & =f & & \text { in } \Omega \\
u & =g & & \text { on } \Gamma_{D} \\
\partial_{n} u & =h & & \text { on } \Gamma_{N}
\end{aligned}
$$

If Ω is convex, $g=0$, and $\Gamma_{N}=\varnothing$ then [N ečas 1967]

$$
u \in H^{2}(\Omega) \quad \text { and } \quad\|u\|_{2, \Omega} \leq c(\Omega)\|f\|_{0, \Omega}
$$

Otherwise $u \in H_{g, D}^{1}(\Omega):=\left\{v \in H^{1}(\Omega): v=w+g, w \in H_{0, D}^{1}(\Omega)\right\}$

A-priori error analysis

Weak form: Find $u \in H_{g, D}^{1}(\Omega)$ such that

$$
(\nabla u, \nabla w)=(f, w)+\langle h, w\rangle_{\Gamma_{N}} \quad \forall w \in H_{0, D}^{1}(\Omega)
$$

Optimal approximation property of the FEM

$$
\begin{array}{r}
\inf _{v_{h} \in V_{h}^{(p)}}\left\|u-v_{h}\right\|_{0, \Omega}=O\left(h^{p+1}\right) \\
\inf _{v_{h} \in V_{h}^{(p)}}\left\|\nabla_{h}\left(u-v_{h}\right)\right\|_{0, \Omega}=O\left(h^{p}\right)
\end{array}
$$

A-priori error analysis

Weak form: Find $u \in H_{g, D}^{1}(\Omega)$ such that

$$
(\nabla u, \nabla w)=(f, w)+\langle h, w\rangle_{\Gamma_{N}} \quad \forall w \in H_{0, D}^{1}(\Omega)
$$

Optimal approximation property of the FEM

$$
\begin{array}{r}
\inf _{v_{h} \in V_{h}^{(p)}}\left\|u-v_{h}\right\|_{0, \Omega}=O\left(h^{p+1}\right) \\
\inf _{v_{h} \in V_{h}^{(p)}}\left\|\nabla_{h}\left(u-v_{h}\right)\right\|_{0, \Omega}=O\left(h^{p}\right)
\end{array}
$$

A word of caution: asymptotic convergence for $h \rightarrow 0$ is combated by round-off errors in practical computations $\mathrm{w} /$ finite-precision arithmetic

Interplay of approximation and round-off errors

Interplay of approximation and round-off errors

Best computable solution u_{h} is obtained for*

$$
N_{\mathrm{opt}}=\left(\frac{\alpha_{T} \beta_{T}}{\alpha_{R} \beta_{R}}\right)^{\frac{1}{\beta_{T}+\beta_{R}}}
$$

with smallest possible error

$$
E_{\min }=\alpha_{T}\left(\frac{1}{N_{\mathrm{opt}}}\right)^{\beta_{T}}+\alpha_{R}\left(\frac{1}{N_{\mathrm{opt}}}\right)^{\beta_{R}}
$$

*J. Liu, MM, H. Schuttelaars, arXiv: 1912.08004

Interplay of approximation and round-off errors

Best computable solution u_{h} is obtained for*

$$
N_{\mathrm{opt}}=\left(\frac{\alpha_{T} \beta_{T}}{\alpha_{R} \beta_{R}}\right)^{\frac{1}{\beta_{T^{+}+\beta_{R}}}}
$$

with smallest possible error

$$
E_{\min }=\alpha_{T}\left(\frac{1}{N_{\mathrm{opt}}}\right)^{\beta_{T}}+\alpha_{R}\left(\frac{1}{N_{\mathrm{opt}}}\right)^{\beta_{R}}
$$

- How sensitive are $\alpha_{T}, \beta_{T}, \alpha_{R}, \beta_{R}$ to problem parameters?
*J. Liu, MM, H. Schuttelaars, arXiv: 1912.08004

Interplay of approximation and round-off errors

Best computable solution u_{h} is obtained for*

$$
N_{\mathrm{opt}}=\left(\frac{\alpha_{T} \beta_{T}}{\alpha_{R} \beta_{R}}\right)^{\frac{1}{\beta_{T^{+\beta}}}}
$$

with smallest possible error

$$
E_{\min }=\alpha_{T}\left(\frac{1}{N_{\mathrm{opt}}}\right)^{\beta_{T}}+\alpha_{R}\left(\frac{1}{N_{\mathrm{opt}}}\right)^{\beta_{R}}
$$

- How sensitive are $\alpha_{T}, \beta_{T}, \alpha_{R}, \beta_{R}$ to problem parameters?
- Can we develop an a-posteriori hp-adaptation strategy?

[^1]```
P2-FEM in 1d: }u(x)=(2\pi\mp@subsup{c}{1}{}\mp@subsup{)}{}{-2}\operatorname{sin}(2\pi\mp@subsup{c}{1}{}x),\quadf(x)=\operatorname{sin}(2\pi\mp@subsup{c}{1}{}x),\quad\Omega=(0,1
```



Top row without scaling; bottom row with scaling $f /\|u\|$ and $u_{h} /\|u\|$

## Analysis of further influence factors

- Type of boundary conditions: no influence
- Imposition of Dirichlet boundary conditions: no influence
- Computer precision: $\alpha_{R}$ changes, $\beta_{R}$ remains constant

All results (also using mixed FEM) were produced with deal.II code*

[^2]
## Analysis of further influence factors

- Type of boundary conditions: no influence
- Imposition of Dirichlet boundary conditions: no influence
- Computer precision: $\alpha_{R}$ changes, $\beta_{R}$ remains constant
- Solution strategy: moderate influence


All results (also using mixed FEM) were produced with deal.II code*

[^3]
## A-posteriori hp-adaptation strategy

Input: initial geometry with mesh width $h$ and approximation order $p$, tolerances for $E_{\min }$ and maximum mesh refinement steps
(1) Normalization: compute $u_{h}$ on coarse mesh and scale $f /\left\|u_{h}\right\|$
(2) Approximation error prediction: compute $u_{h}, u_{h / 2}, \ldots$ on coarse meshes until asymptotic convergence rate is observed $\rightarrow \alpha_{T}, \beta_{T}$
(3) Round-off error prediction: use lookup table from previous simulations or use manufactured solution that can be resolved exactly by $P_{p}$-FEM (possibly using lower precision) $\rightarrow \alpha_{R}, \beta_{R}$
(4) Effective error prediction: compute $N_{\text {opt }}$ and $E_{\text {min }}$

Output: $N_{\text {opt }}$ and $E_{\text {min }}$. If the estimated error satisfies the required tolerance compute $u_{\text {opt }}$ otherwise repeat procedure with $p:=p+1$ or switch to mixed FEM formulation

## Model problem \#2

## Helmholtz equation:

$$
\begin{aligned}
\left((0.01+x)(1.01-x) u_{x}\right)_{x}-(0.01 i) u(x) & =1.0 \quad \text { in }(0,1) \\
u(0) & =0 \\
u_{x}(1) & =0
\end{aligned}
$$



second derivative


## Model problem \#2

## Helmholtz equation:

$$
\begin{aligned}
\left((0.01+x)(1.01-x) u_{x}\right)_{x}-(0.01 i) u(x) & =1.0 \quad \text { in }(0,1) \\
u(0) & =0 \\
u_{x}(1) & =0
\end{aligned}
$$




| second derivative |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $100 \%$ |  |  |  |  |
| $20 \%$ |  |  |  |  |

## Is this of practical relevance?



Yes ...

- since high-order methods can improve the 'effective' accuracy of solutions by orders of magnitudes
- since $h$-refinement is only effective in a small range of refinements for (very) high-order methods and should therefore be used with care
$S_{p}^{p-1}$-IGA solutions of model problem $\# 1$ with $\Omega=(0,1)$


## Is this of practical relevance?


$S_{p}^{p-1}$-IGA solutions of model problem $\# 1$ with $\Omega=(0,1)^{2}$

Yes ...

- since high-order methods can improve the 'effective' accuracy of solutions by orders of magnitudes
- since $h$-refinement is only effective in a small range of refinements for (very) high-order methods and should therefore be used with care
- since the same phenomenon is observed already for moderately refined meshes in 2d (and 3d)


## Part 2: Solver efficiency

## Efficient solvers for IGA discretizations

$h$-multigrid methods enhanced with

- boundary corrected mass-Richardson smoother [Hofreither 2017]
- hybrid smoother [Sogn 2018]
- multiplicative Schwarz smoother [de la Riva 2018]

Preconditioners based on

- Schwarz methods [Beirão da Veiga 2012]
- Sylvester equation [Sangalli 2016]
- BPX for (T)HB [Bracco et al. 2019]
- ...


## Basics of multigrid methods [Strang 2006]

Repeat until converged $\mathbf{u}_{\text {fine }}$ is reached
(1) Iterate on $\mathbf{A}_{\text {fine }} \mathbf{u}_{\text {fine }}=\mathbf{f}_{\text {fine }}$ to reach $\tilde{\mathbf{u}}_{\text {fine }}$
(2) Restrict the residual $\mathbf{r}_{\text {fine }}:=\mathbf{f}_{\text {fine }}-\mathbf{A}_{\text {fine }} \tilde{\mathbf{u}}_{\text {fine }}$ to the coarse level by applying the restriction operator, i.e. $\mathbf{r}_{\text {coarse }}=\mathbf{I}_{\text {fine }}^{\text {coars }} \mathbf{r}_{\text {fine }}$
(3) Solve for the coarse level correction $\mathbf{A}_{\text {coarse }} \mathbf{E}_{\text {coarse }}=\mathbf{r}_{\text {coarse }}$
(4) Prolongate $\mathbf{E}_{\text {coarse }}$ back to the fine level by $\mathbf{E}_{\text {fine }}=\mathbf{I}_{\text {coarse }}^{\text {fine }} \mathbf{E}_{\text {coarse }}$
(5) Add the correction, i.e. $\hat{\mathbf{u}}_{\text {fine }}:=\tilde{\mathbf{u}}_{\text {fine }}+\mathbf{E}_{\text {fine }}$
(6) Iterate on $\mathbf{A}_{\text {fine }} \hat{\mathbf{u}}_{\text {fine }}=\mathbf{f}_{\text {fine }}$ to reach $\mathbf{u}_{\text {fine }}$

Step 3 calls the multigrid procedure recursively until a coarse level is reached, where the error equation can be solved 'exactly'.

## Motivation for using $p$-multigrid methods

The linear system $\mathbf{A}_{h, p} \mathbf{u}_{h, p}=\mathbf{f}_{h, p}$

- becomes more difficult to solve for increasing $p$
- reduces to $C^{0}$-FEM for $p=1$ (where $h$-multigrid works fine)

In contrast to $h$-multigrid methods

- the \#DoFs does not reduce significantly on coarser $p$-levels
- the stencil reduces significantly on coarse $p$-levels
- the spaces are not nested, i.e. $\left(S_{h, p}^{p-1} \not \supset S_{h, p-1}^{p-2} \nsupseteq \ldots\right)$


## V-cycle p-multigrid variants



- ILUT or GS smoothing is applied at each level (•)
- LU decomposition is applied as direct coarse level solver


## Prolongation and restriction

## Prolongation in $h$

$\mathcal{I}_{2 h, 1}^{h, 1}$ is linear interpolation

## Restriction in $h$

$$
\mathcal{I}_{h, 1}^{2 h, 1}=\frac{1}{2}\left(\mathcal{I}_{2 h, 1}^{h, 1}\right)^{\top}
$$

## Restriction in $p$

$$
\mathcal{I}_{h, p}^{h, p-1}:=\left(\mathbf{M}_{p-1}^{p-1}\right)^{-1} \mathbf{M}_{p}^{p-1}
$$

Let $\phi_{i}^{q}$ denote the $i^{\text {th }}$ basis function from $S_{h, q}^{q-1}$. Then define

$$
\left(\mathbf{M}_{q}^{r}\right)_{(i, j)}:=\int_{\hat{\Omega}_{h}} \phi_{i}^{q}(\boldsymbol{\xi}) \phi_{j}^{r}(\boldsymbol{\xi}) c(\boldsymbol{\xi}) \mathrm{d} \hat{\Omega}
$$

Replace $\mathbf{M}_{q}^{q}$ by its row-sum lumped counterpart ( $\rightarrow$ diagonal matrix)

## ILUT smoother [Saad 1994]

Setup: Incomplete LU factorization of $\mathbf{A}_{h, p} \approx \mathbf{L}_{h, p} \mathbf{U}_{h, p}$ thereby
(1) dropping all elements lower than tolerance $\tau=10^{-13}$
(2) keeping only the $N$ (= average number of non-zero entries in each row of $\mathbf{A}_{h, p}$ ) largest elements in each row

Application: perform $s=1, \ldots, \nu$ smoothing steps

$$
\begin{aligned}
\mathbf{e}_{h, p}^{(s)} & =\left(\mathbf{L}_{h, p} \mathbf{U}_{h, p}\right)^{-1}\left(\mathbf{f}_{h, p}-\mathbf{A}_{h, p} \mathbf{u}_{h, p}^{(s)}\right) \\
\mathbf{u}_{h, p}^{(s+1)} & =\mathbf{u}_{h, p}^{(s)}+\mathbf{e}_{h, p}^{(s)}
\end{aligned}
$$

## Model problem \#1, revisited

Obtaining coarse level operators

- Galerkin projection $\mathbf{A}_{h, p-1}^{G}=\mathcal{I}_{h, p}^{h, p-1} \mathbf{A}_{h, p} \mathcal{I}_{h, p-1}^{h, p}$
- re-discretization of $\mathbf{A}_{h, p}$ on each level


## Model problem \#1, revisited

Obtaining coarse level operators

- Galerkin projection $\mathbf{A}_{h, p-1}^{G}=\mathcal{I}_{h, p}^{h, p-1} \mathbf{A}_{h, p} \mathcal{I}_{h, p-1}^{h, p}$
- re-discretization of $\mathbf{A}_{h, p}$ on each level

Poisson equation on quarter annulus with radii 1 and $2, g=0, \Gamma_{N}=\varnothing$, $f$ such that $u(x, y)=-\left(x^{2}+y^{2}-1\right)\left(x^{2}+y^{2}-4\right) x y^{2}$

| $p=2$ | $\kappa\left(\mathbf{A}_{h, 1}^{G}\right)$ | $\kappa\left(\mathbf{A}_{h, 1}^{R D}\right)$ | $p=3$ | $\kappa\left(\mathbf{A}_{h, 2}^{G}\right)$ | $\kappa\left(\mathbf{A}_{h, 2}^{R D}\right)$ |
| :---: | :--- | :--- | :---: | :--- | :--- |
| $h=2^{-4}$ | $6.00 \cdot 10^{7}$ | $9.78 \cdot 10^{2}$ | $h=2^{-4}$ | $7.00 \cdot 10^{9}$ | $1.56 \cdot 10^{3}$ |
| $h=2^{-5}$ | $4.79 \cdot 10^{9}$ | $4.19 \cdot 10^{3}$ | $h=2^{-5}$ | $6.15 \cdot 10^{10}$ | $6.71 \cdot 10^{3}$ |
| $h=2^{-6}$ | $2.94 \cdot 10^{10}$ | $1.76 \cdot 10^{4}$ | $h=2^{-6}$ | $4.99 \cdot 10^{11}$ | $2.84 \cdot 10^{4}$ |
| $h=2^{-7}$ | $5.48 \cdot 10^{10}$ | $7.28 \cdot 10^{4}$ | $h=2^{-7}$ | $7.58 \cdot 10^{12}$ | $1.18 \cdot 10^{5}$ |

## V-cycle p-multigrid variants, revisited



- Setup: Assembly of $\mathbf{A}_{h, p}, \mathcal{I}_{h, p}^{h, p-1}, \mathcal{I}_{h, p-1}^{h, p}$ each
$O\left(N_{\text {dof }} p^{3 d}\right)$ flops ILUT factorization of $\mathbf{A}_{h, p}$
$O\left(N_{\text {dof }} p^{2 d}\right)$ flops Gauss-Seidel 'setup' $O\left(N_{\text {dof }}\right)$ flops
- V-cycle: Application of smoother, rest/prol each $O\left(N_{\text {dof }} p^{d}\right)$ flops


## V-cycle p-multigrid variants, revisited



- Setup: Assembly of $\mathbf{A}_{h, p}, \mathcal{I}_{h, p}^{h, p-1}, \mathcal{I}_{h, p-1}^{h, p}$ each $\quad O\left(N_{\text {dof }} p^{3 d}\right)$ flops ILUT factorization of $\mathbf{A}_{h, p}$ $O\left(N_{\text {dof }} p^{2 d}\right)$ flops Gauss-Seidel 'setup'
$O\left(N_{\text {dof }}\right)$ flops
- V-cycle: Application of smoother, rest/prol each $O\left(N_{\text {dof }} p^{d}\right)$ flops
- Numerical tests show same V-cycle counts for both variants


## The final $V$-cycle $p$-multigrid variant



- ILUT $(p>1) / \mathrm{GS}$ smoothing $(p=1)$ is applied at each level ( $\bullet$ )
- LU decomposition is applied as direct coarse level solver


## Model problem \#1: V-cycle counts

V-cycle $p$-multigrid as a solver

|  | $p=2$ |  | $p=3$ |  | $p=4$ |  | $p=5$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ILUT $^{\star}$ | GS |
| $h=2^{-6}$ | 4 | 30 | 3 | 62 | 3 | 176 | 3 | 491 |
| $h=2^{-7}$ | 4 | 29 | 3 | 61 | 3 | 172 | 3 | 499 |
| $h=2^{-8}$ | 5 | 30 | 3 | 60 | 3 | 163 | 3 | 473 |
| $h=2^{-9}$ | 5 | 32 | 3 | 61 | 3 | 163 | 3 | 452 |

V-cycle h-multigrid shows similar convergence behavior

[^4]
## Model problem \#1: V-cycle counts

V-cycle p-multigrid as preconditioner in BiCGStab

|  | $p=2$ |  | $p=3$ |  | $p=4$ |  | $p=5$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ILUT $^{\star}$ | GS |
| $h=2^{-6}$ | 2 | 13 | 2 | 18 | 2 | 41 | 2 | 78 |
| $h=2^{-7}$ | 2 | 12 | 2 | 20 | 2 | 41 | 2 | 92 |
| $h=2^{-8}$ | 3 | 13 | 2 | 19 | 2 | 43 | 2 | 95 |
| $h=2^{-9}$ | 3 | 13 | 2 | 21 | 2 | 41 | 2 | 95 |

V-cycle h-multigrid shows similar convergence behavior

[^5]
## Model problem \#1: CPU times for $h=2^{-6}$



## Model problem \#1: CPU times for $h=2^{-7}$



## Model problem \#1: CPU times for $h=2^{-8}$



## Model problem \#1: CPU times for $h=2^{-9}$



## Model problem \#3

Convection-diffusion-reaction equation in $\Omega=(0,1)^{2}$

$$
\begin{aligned}
-\nabla \cdot\left(\left[\begin{array}{rr}
1.2 & -0.7 \\
-0.4 & 0.9
\end{array}\right] \nabla u\right)+\left[\begin{array}{r}
0.4 \\
-0.2
\end{array}\right] \cdot \nabla u+0.3 u & =f \quad \text { in } \Omega \\
u & =0 \quad \text { on } \Gamma
\end{aligned}
$$

with $f$ such that $u(x, y)=\sin (\pi x) \sin (\pi y)$

## Model problem \#3: V-cycle counts

V-cycle $p$-multigrid as a solver

|  | $p=2$ |  | $p=3$ |  | $p=4$ |  | $p=5$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ILUT | GS | ILUT | GS | ILUT | GS | ILUT | GS |
| $h=2^{-6}$ | 5 | - | 3 | - | 3 | - | 4 | - |
| $h=2^{-7}$ | 5 | - | 3 | - | 4 | - | 4 | - |
| $h=2^{-8}$ | 5 | - | 3 | - | 3 | - | 4 | - |
| $h=2^{-9}$ | 5 | - | 4 | - | 3 | - | 4 | - |

V-cycle h-multigrid shows similar convergence behavior

## Model problem \#3: V-cycle counts

V-cycle p-multigrid as preconditioner in BiCGStab

|  | $p=2$ |  | $p=3$ |  | $p=4$ |  | $p=5$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ILUT | GS | ILUT | GS | ILUT | GS | ILUT | GS |
| $h=2^{-6}$ | 2 | 7 | 2 | 13 | 2 | 29 | 2 | 65 |
| $h=2^{-7}$ | 2 | 8 | 2 | 13 | 2 | 29 | 2 | 70 |
| $h=2^{-8}$ | 2 | 7 | 2 | 12 | 2 | 29 | 2 | 64 |
| $h=2^{-9}$ | 2 | 7 | 2 | 14 | 2 | 28 | 2 | 72 |

V-cycle h-multigrid shows similar convergence behavior

## Conclusion and outlook

(1) a-posteriori $h p$-adaptation strategy to find ( $h, p$ ) pair that ensures computable approximations with prescribed accuracy
(2) p-multigrid method with ILUT smoother as efficient solver

## Conclusion and outlook

(1) a-posteriori $h p$-adaptation strategy to find ( $h, p$ ) pair that ensures computable approximations with prescribed accuracy

- integration as fully automated procedure in simulation code
- further analysis of influence factors, i.e. iterative solvers
- use of number formats that are less sensitive to round-off errors
(2) p-multigrid method with ILUT smoother as efficient solver


## Conclusion and outlook

(1) a-posteriori $h p$-adaptation strategy to find ( $h, p$ ) pair that ensures computable approximations with prescribed accuracy

- integration as fully automated procedure in simulation code
- further analysis of influence factors, i.e. iterative solvers
- use of number formats that are less sensitive to round-off errors
(2) p-multigrid method with ILUT smoother as efficient solver
- application to biharmonic equation and within NSE solver
- extension to block-ILUT smoother for multi-patch IGA
- optimization of assembly procedure in G+Smo


## Conclusion and outlook

(1) a-posteriori $h p$-adaptation strategy to find ( $h, p$ ) pair that ensures computable approximations with prescribed accuracy

- integration as fully automated procedure in simulation code
- further analysis of influence factors, i.e. iterative solvers
- use of number formats that are less sensitive to round-off errors
(2) p-multigrid method with ILUT smoother as efficient solver
- application to biharmonic equation and within NSE solver
- extension to block-ILUT smoother for multi-patch IGA
- optimization of assembly procedure in G+Smo

High-order methods, are they a curse or a blessing?

## Conclusion and outlook

(1) a-posteriori $h p$-adaptation strategy to find ( $h, p$ ) pair that ensures computable approximations with prescribed accuracy

- integration as fully automated procedure in simulation code
- further analysis of influence factors, i.e. iterative solvers
- use of number formats that are less sensitive to round-off errors
(2) p-multigrid method with ILUT smoother as efficient solver
- application to biharmonic equation and within NSE solver
- extension to block-ILUT smoother for multi-patch IGA
- optimization of assembly procedure in G+Smo

High-order methods, are they a curse or a blessing? ... a challenge!
Thank you very much!


[^0]:    *CSC Scholarship

[^1]:    *J. Liu, MM, H. Schuttelaars, arXiv: 1912.08004

[^2]:    *J. Liu, MM, H. Schuttelaars, arXiv: 1912.08004

[^3]:    *J. Liu, MM, H. Schuttelaars, arXiv: 1912.08004

[^4]:    *ILUT $(p>1), \mathrm{GS}(p=1)$

[^5]:    *ILUT $(p>1), \mathrm{GS}(p=1)$

