Algebraic Flux Correction

Basic concepts, recent results for nonconforming finite elements, and aspects of parallelization

Matthias Möller Chair 3 - Applied Mathematics technische universität dortmund

January 31, 2013 - TU Kaiserslautern

Sample application

Magnetic force between two parallel wires

Magnetic forces in the Z-machine (Sandia National Labs)

Sample application

Magnetic force between two parallel wires

Magnetic forces in the Z-machine (Sandia National Labs)

Idealized Z-Pinch implosions

Phenomenological model by Banks and Shadid^(a)

$$\partial_t \begin{pmatrix} \rho \\ \rho \mathbf{v} \\ \rho E \end{pmatrix} + \nabla \cdot \begin{pmatrix} \rho \mathbf{v} \\ \rho \mathbf{v} \otimes \mathbf{v} + p \mathcal{I} \\ \rho E \mathbf{v} + p \mathbf{v} \end{pmatrix} = \begin{pmatrix} 0 \\ \mathbf{f} \\ \mathbf{f} \cdot \mathbf{v} \end{pmatrix}$$
$$0 \le \lambda \le 1 \qquad \partial_t (\lambda \rho) + \nabla \cdot (\lambda \rho \mathbf{v}) = 0$$

Lorentz force term and equation of state

$$\mathbf{f} = (\rho \lambda) \frac{12(1 - t^4)t}{\max\{r, 10^{-4}\}} \hat{\mathbf{e}}_r$$
$$p = (\gamma - 1)\rho(E - 0.5 \|\mathbf{v}\|^2)$$

Idealized Z-Pinch implosions

Phenomenological model by Banks and Shadid^(a)

$$\partial_t \begin{pmatrix} \rho \\ \rho \mathbf{v} \\ \rho E \end{pmatrix} + \nabla \cdot \begin{pmatrix} \rho \mathbf{v} \\ \rho \mathbf{v} \otimes \mathbf{v} + p \mathcal{I} \\ \rho E \mathbf{v} + p \mathbf{v} \end{pmatrix} = \begin{pmatrix} 0 \\ \mathbf{f} \\ \mathbf{f} \cdot \mathbf{v} \end{pmatrix}$$
$$0 \le \lambda \le 1 \qquad \partial_t (\lambda \rho) + \nabla \cdot (\lambda \rho \mathbf{v}) = 0$$

Lorentz force term and equation of state

$$\mathbf{f} = (\rho \lambda) \frac{12(1 - t^4)t}{\max\{r, 10^{-4}\}} \hat{\mathbf{e}}_r$$
$$p = (\gamma - 1)\rho(E - 0.5 \|\mathbf{v}\|^2)$$

Numerical challenges

- transient transport processes with strongly varying time scales
- accurate resolution of moving fronts both in time and space
- fluid quantities like mass density must not become negative
- large nonlinear coupled systems of (hyperbolic) conservation laws

Algebraic Flux Correction, abbr. **AFC**, family of high-resolution schemes for convection-dominated transport and anisotropic diffusion problems

- universal stabilization approach based on algebraic design criteria
- approved for conforming (multi-)linear finite element schemes
- found complicated to extend to higher-order finite elements^(e)

Outline

- Review of algebraic flux correction schemes in the context of conforming finite elements
- Extension of the algebraic flux correction paradigm to nonconforming finite elements
- Parallelization of edge-based AFC schemes
- Summary and Outlook

Algebraic Flux Correction

Part I: Basic concepts

Design criteria Discrete upwinding AFC-type schemes

Model problem: $\partial_t u + \nabla \cdot \mathbf{f} = 0, \quad \mathbf{f} = \mathbf{v}u$

FEM approximation $(w_h, \partial_t u_h + \nabla \cdot \mathbf{f}_h)_{\Omega} = 0 \quad \forall w_h \in W_h$

$$u_h = \sum_j \varphi_j(\mathbf{x}) u_j(t), \qquad \mathbf{f}_h = \sum_j \varphi_j(\mathbf{x}) \mathbf{f}(u_j(t))$$

Galerkin method $\forall i: \sum_{j} m_{ij} \dot{u}_j = \sum_{j} k_{ij} u_j$ $(\varphi_i, -\nabla \varphi_j)_{\Omega} \cdot \mathbf{v}_j$

Model problem: $\partial_t u + \nabla \cdot \mathbf{f} = 0, \quad \mathbf{f} = \mathbf{v}u$

FEM approximation $(w_h, \partial_t u_h + \nabla \cdot \mathbf{f}_h)_{\Omega} = 0 \quad \forall w_h \in W_h$

$$u_h = \sum_j \varphi_j(\mathbf{x}) u_j(t), \qquad \mathbf{f}_h = \sum_j \varphi_j(\mathbf{x}) \mathbf{f}(u_j(t))$$

Galerkin method

$$\forall i: \quad \sum_{j} m_{ij} \dot{u}_j = \sum_{j} k_{ij} u_j$$

Problem

generation of spurious oscillations near steep gradients occur unless stabilization of the convective term is performed

algebraic flux correction (AFC)

Local Extremum Diminishing^(b)

Let the semi-discrete system be given by

$$m_i \dot{u}_i = \sum_{j \neq i} \sigma_{ij} (u_j - u_i) \qquad \begin{array}{l} m_i > 0, \quad \forall i \\ \sigma_{ij} \ge 0 \quad \forall j \neq i \end{array}$$

Then local extrema are not enhanced

$$u_{i} = \begin{cases} u^{\max} \\ u^{\min} \end{cases} \Rightarrow \quad \dot{u}_{i} = \frac{1}{m_{i}} \sum_{j \neq i} \sigma_{ij} (u_{j} - u^{\max}) \begin{cases} \leq 0 \\ \geq 0 \end{cases}$$

Local Extremum Diminishing^(b)

Let the semi-discrete system be given by

$$m_i \dot{u}_i = \sum_{j \neq i} \sigma_{ij} (u_j - u_i) \qquad \begin{array}{l} m_i > 0, \quad \forall i \\ \sigma_{ij} \ge 0 \quad \forall j \neq i \end{array}$$

Then local extrema are not enhanced

$$u_{i} = \begin{cases} \frac{u^{\max}}{u^{\min}} \Rightarrow \dot{u}_{i} = \frac{1}{m_{i}} \sum_{j \neq i} \sigma_{ij} (u_{j} - u^{\max}) \begin{cases} \leq 0 \\ \geq 0 \end{cases}$$

Galerkin method violates LED constraint

$$\begin{split} \sum_{j} m_{ij} \dot{u}_{j} &= \sum_{j} k_{ij} u_{j} = \sum_{j \neq i} k_{ij} (u_{j} - u_{i}) + u_{i} \sum_{j} k_{ij} \\ \exists k_{ij} < 0, \ j \neq i \end{split}$$

Local Extremum Diminishing^(b)

Let the semi-discrete system be given by

$$m_i \dot{u}_i = \sum_{j \neq i} \sigma_{ij} (u_j - u_i) \qquad \begin{array}{l} m_i > 0, \quad \forall i \\ \sigma_{ij} \ge 0 \quad \forall j \neq i \end{array}$$

Then local extrema are not enhanced

$$u_{i} = \begin{cases} \frac{u^{\max}}{u^{\min}} \Rightarrow \dot{u}_{i} = \frac{1}{m_{i}} \sum_{j \neq i} \sigma_{ij} (u_{j} - u^{\max}) \begin{cases} \leq 0 \\ \geq 0 \end{cases}$$

Galerkin method violates LED constraint

$$\begin{split} \sum_{j} m_{ij} \dot{u}_{j} &= \sum_{j} k_{ij} u_{j} = \sum_{j \neq i} k_{ij} (u_{j} - u_{i}) + u_{i} \sum_{j} k_{ij} \\ \exists k_{ij} < 0, \ j \neq i & =: g_{i} \end{split}$$

Discrete Upwinding^(c)

Prerequisite:
$$m_{ij} = (\varphi_i, \varphi_j)_{\Omega} \ge 0 \ \forall i, j$$

 $\land \ m_i = \sum_j m_{ij} > 0 \ \forall i$

Low-order method

$$m_i \dot{u}_i = \sum_{j \neq i} [k_{ij} + d_{ij}](u_j - u_i) + g_i$$

artificial diffusion coefficient

$$\begin{aligned} \mathbf{d_{ij}} &= \max\{-k_{ij}, 0, -k_{ji}\} = \mathbf{d_{ji}}\\ \Rightarrow \begin{cases} l_{ij} := k_{ij} + \mathbf{d_{ij}} \ge 0\\ l_{ji} := k_{ji} + \mathbf{d_{ji}} \ge 0 \end{cases} \end{aligned}$$

 satisfies the LED constraint but it is overly diffusive Galerkin method + mass lumping + artificial diffusion

 $\partial_t u + v \partial_x u = 0, \quad v = \text{const}$

• Galerkin method $M\dot{u} = Ku$

$$\frac{\Delta x}{6} \begin{bmatrix} 2 & 1 & & \\ 1 & 4 & 1 & \\ & 1 & 4 & 1 \\ & & 1 & 2 \end{bmatrix} \begin{bmatrix} \dot{u}_1 \\ \dot{u}_2 \\ \dot{u}_3 \\ \dot{u}_4 \end{bmatrix} = \frac{v}{2} \begin{bmatrix} 1 & -1 & & \\ 1 & 0 & -1 & \\ & 1 & 0 & -1 \\ & & 1 & -1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix}$$

Low-order method

 $\partial_t u + v \partial_x u = 0, \quad v = \text{const}$

• Galerkin method $M\dot{u} = Ku$

$$\frac{\Delta x}{6} \begin{bmatrix} 2 & 1 & & \\ 1 & 4 & 1 & \\ & 1 & 4 & 1 \\ & & 1 & 2 \end{bmatrix} \begin{bmatrix} \dot{u}_1 \\ \dot{u}_2 \\ \dot{u}_3 \\ \dot{u}_4 \end{bmatrix} = \frac{v}{2} \begin{bmatrix} 1 & -1 & & \\ 1 & 0 & -1 & \\ & 1 & 0 & -1 \\ & & 1 & -1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix}$$

mass lumpingLow-order method

$$\frac{\Delta x}{2} \begin{bmatrix} 1 & & \\ & 2 & \\ & & 2 & \\ & & & 1 \end{bmatrix} \begin{bmatrix} \dot{u}_1 \\ \dot{u}_2 \\ \dot{u}_3 \\ \dot{u}_4 \end{bmatrix} = \frac{v}{2} \begin{bmatrix} 1 & -1 & & \\ & 1 & 0 & -1 & \\ & & 1 & 0 & -1 \\ & & & 1 & -1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix}$$

 $\partial_t u + v \partial_x u = 0, \quad v = \text{const}$

• Galerkin method $M\dot{u} = Ku$

$$\frac{\Delta x}{6} \begin{bmatrix} 2 & 1 & & \\ 1 & 4 & 1 & \\ & 1 & 4 & 1 \\ & & 1 & 2 \end{bmatrix} \begin{bmatrix} \dot{u}_1 \\ \dot{u}_2 \\ \dot{u}_3 \\ \dot{u}_4 \end{bmatrix} = \frac{v}{2} \begin{bmatrix} 1 & -1 & & \\ 1 & 0 & -1 & \\ & 1 & 0 & -1 \\ & & 1 & -1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix}$$

artificial diffusion

Low-order method

$$\frac{\Delta x}{2} \begin{bmatrix} 1 & & \\ & 2 & \\ & & 2 & \\ & & & 1 \end{bmatrix} \begin{bmatrix} \dot{u}_1 \\ \dot{u}_2 \\ \dot{u}_3 \\ \dot{u}_4 \end{bmatrix} = \frac{v}{2} \begin{bmatrix} 1-1 & -1+1 & & \\ 1+1 & 0-1 & -1 & \\ & 1 & 0 & -1 \\ & & & 1 & -1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix}$$

 $\partial_t u + v \partial_x u = 0, \quad v = \text{const}$

• Galerkin method $M\dot{u} = Ku$

$$\frac{\Delta x}{6} \begin{bmatrix} 2 & 1 & & \\ 1 & 4 & 1 & \\ & 1 & 4 & 1 \\ & & 1 & 2 \end{bmatrix} \begin{bmatrix} \dot{u}_1 \\ \dot{u}_2 \\ \dot{u}_3 \\ \dot{u}_4 \end{bmatrix} = \frac{v}{2} \begin{bmatrix} 1 & -1 & & \\ 1 & 0 & -1 & \\ & 1 & 0 & -1 \\ & & 1 & -1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix}$$

artificial diffusion

Low-order method

$$\frac{\Delta x}{2} \begin{bmatrix} 1 & & \\ & 2 & \\ & & 2 & \\ & & & 1 \end{bmatrix} \begin{bmatrix} \dot{u}_1 \\ \dot{u}_2 \\ \dot{u}_3 \\ \dot{u}_4 \end{bmatrix} = \frac{v}{2} \begin{bmatrix} 0 & 0 & & \\ 2 & -1-1 & -1+1 & \\ & 1+1 & 0-1 & -1 \\ & & & 1 & -1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix}$$

• Galerkin method $M\dot{u} = Ku$

$$\frac{\Delta x}{6} \begin{bmatrix} 2 & 1 & & \\ 1 & 4 & 1 & \\ & 1 & 4 & 1 \\ & & 1 & 2 \end{bmatrix} \begin{bmatrix} \dot{u}_1 \\ \dot{u}_2 \\ \dot{u}_3 \\ \dot{u}_4 \end{bmatrix} = \frac{v}{2} \begin{bmatrix} 1 & -1 & & \\ 1 & 0 & -1 & \\ & 1 & 0 & -1 \\ & & 1 & -1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix}$$

• Low-order method $M_L \dot{u} = [K+D]u$

$$\frac{\Delta x}{2} \begin{bmatrix} 1 & & & \\ & 2 & & \\ & & 2 & \\ & & & 1 \end{bmatrix} \begin{bmatrix} \dot{u}_1 \\ \dot{u}_2 \\ \dot{u}_3 \\ \dot{u}_4 \end{bmatrix} = v \begin{bmatrix} 0 & 0 & & & \\ 1 & -1 & 0 & & \\ & 1 & -1 & 0 & \\ & & 1 & -1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix}$$

AFC-type method $m_i \dot{u}_i = \sum_{j \neq i} l_{ij}(u_j - u_i) + g_i + \sum_{j \neq i} \alpha_{ij} f_{ij}$

raw antidiffusive fluxes

$$\begin{aligned} \mathbf{f}_{ij} &= m_{ij}(\dot{u}_i - \dot{u}_j) + d_{ij}(u_i - u_j) \\ f_{ji} &= -f_{ij} \end{aligned}$$

edge-wise correction factors

 $0 \le \alpha_{ij} = \alpha_{ji} \le 1$

are computed by some variant of Zalesak's multidimensional limiter

Galerkin method + mass lumping + artificial diffusion + limited antidiffusion

Family of AFC-type method

Linearized FCT algorithm^(f)

Compute low-order predictor by Crank-Nicolson time stepping scheme

$$\left(\frac{1}{\Delta t}M_L - \frac{1}{2}[K+D]\right)\boldsymbol{u}^L = \frac{1}{\Delta t}M_L\boldsymbol{u}^n + \frac{1}{2}[K+D]\boldsymbol{u}^n$$

Approximate the time derivative

$$\dot{\boldsymbol{u}}^{\boldsymbol{L}} = M_L^{-1} [K+D] \boldsymbol{u}^{\boldsymbol{L}}$$

Linearize the raw antidiffusive fluxes and perform prelimiting

$$\begin{aligned} f_{ij} &= m_{ij} (\dot{u}_i^L - \dot{u}_j^L) + d_{ij} (u_i^L - u_j^L) \\ f'_{ij} &:= 0 \quad \text{if} \quad f_{ij} (u_j^L - u_i^L) > 0 \end{aligned}$$

• Compute correction factors α_{ij} and update end-of-step solution

$$u_i^{n+1} = u_i^L + \frac{\Delta t}{m_i} \sum_{j \neq i} \alpha_{ij} f'_{ij}$$

Linearized FCT for the Z-pinch problem^(g,h)

Algebraic Flux Correction

Part II: Extension to nonconforming finite elements

Finite element spaces Review of design criteria Numerical examples

Reasons for nonconforming finite elements

Reduction of communication costs in parallel computations

Unique definition of normal vectors

Scientific curiosity

Do nonconforming approximations work in the AFC machinery?

,Regular' sparsity pattern

Parametric finite elements

- Reference map $\Psi_T : \hat{T} := [-1, 1]^2 \mapsto T \in \mathcal{T}_h$
- Polynomial space $\mathcal{Q}(T) = \{q = \hat{q} \circ \Psi_T^{-1}, \, \hat{q} \in \hat{\mathcal{Q}}(\hat{T})\}$

Parametric finite elements

- Reference map $\Psi_T : \hat{T} := [-1, 1]^2 \mapsto T \in \mathcal{T}_h$
- Polynomial space $\mathcal{Q}(T) = \{q = \hat{q} \circ \Psi_T^{-1}, \, \hat{q} \in \hat{\mathcal{Q}}(\hat{T})\}$

$\hat{Q}_1(\hat{T}) = \operatorname{span}\langle 1, \hat{x}, \hat{y}, \hat{x}\hat{y} \rangle$	$\hat{Q}_1^{\rm nc}(\hat{T}) = \operatorname{span}\langle 1, \hat{x}, \hat{y}, \hat{x}^2 - \hat{y}^2 \rangle$
 AFC is known to work 	 need to verify prerequisites
$\operatorname{supp}(\varphi_i) \cap \operatorname{supp}(\varphi_j) \neq \emptyset$	$m_{ij} = \left(\varphi_i, \varphi_j\right)_{\Omega} \ge 0, \forall i, j$
$\Leftrightarrow m_{ij} = (\varphi_i, \varphi_j)_{\Omega} > 0$	$m_i = \sum_j m_{ij} > 0, \forall i$

Rotated bilinear shape functions

$$\hat{\varphi}^{(k)}(\hat{x},\hat{y}) = \begin{cases} \frac{1}{4} \pm \frac{1}{2}\hat{x} + \beta(\hat{x}^2 - \hat{y}^2), & k = 1, 3\\ \frac{1}{4} \pm \frac{1}{2}\hat{y} - \beta(\hat{x}^2 - \hat{y}^2), & k = 2, 4 \end{cases}$$

Based on midpoint values

Matrix analysis

- Local mass matrix evaluated on the reference element
 - Midpoint based variant does not satisfy the prerequisites

$$\hat{M}_{"1/4"} = \frac{1}{180} \begin{pmatrix} 113 & 37 & -7 & 37 \\ 37 & 113 & 37 & -7 \\ -7 & 37 & 113 & 37 \\ 37 & -7 & 37 & 113 \end{pmatrix}$$

Integral mean value based variant satisfies prerequisites

$$\hat{M}_{3/8} = \frac{1}{60} \begin{pmatrix} 41 & 9 & 1 & 9 \\ 9 & 41 & 9 & 1 \\ 1 & 9 & 41 & 9 \\ 9 & 1 & 9 & 41 \end{pmatrix}$$

Solid body rotation

$$\dot{u} + \nabla \cdot (\mathbf{v}u) = 0$$
 in $(0, 1)^2$
 $u = 0$ on Γ_{inflow}

- Velocity field $\mathbf{v} = (0.5 - y, x - 0.5)$
- Grid size $h = 1/2^l, l = 5, 6, \dots$
- Crank-Nicolson scheme $\Delta t = 1.28 \cdot h$
- Initial = exact solution at $t=2\pi k, \ k\in\mathbb{N}$

SBR: bilinear vs. Rannacher-Turek elements

SBR: convergence history

	РI	р2
Q_1	0.38	0.22
Q_1^{nc}	0.43	0.25

estimated
order of
accuracy

	Рİ	р2
Q_1	0.76	0.38
$Q_1^{ m nc}$	0.71	0.35

SBR: midpoint based $Q_1^{\rm nc}$ variant

- The sign criteria on the coefficients of the mass matrix is a necessary condition for the application of the AFC machinery.
- Is it also a sufficient condition for AFC-type methods to work?

<u>Test:</u> nonconforming Crouzeix-Raviart elements on triangles lead to a diagonal consistent mass matrix with strictly positive coefficients!

SBR: linear vs. Crouzeix-Raviart elements^(×)

Tentative summary

- Sign criteria seems to be a necessary and sufficient condition to ensure that AFC-type methods enforce upper and lower bounds.
- There is not (yet) a sufficient condition which guarantees that the AFC machinery produces accurate approximations in practice.

finite element	prerequisites	boundedness	accuracy	
PI and QI	yes	yes	yes	
integral meanvalue based Rannacher-Turek element	yes	yes	yes	
midpoint based Rannacher-Turek element	no	no	no	
Crouzeix-Raviart element	yes	yes	no	

Linearized FCT for compressible Euler equations

Linearized FCT for compressible Euler equations

Algebraic Flux Correction

Part III: Efficiency and aspects of parallelization

Efficient data structures Edge-based assembly

Performance of SpMV-kernels

Matrix pattern for unstructured mesh

Tesla C2070 GPU (ECC off) SpMV with different sorting strategies

Performance of SpMV-kernels

Matrix pattern for unstructured mesh

Tesla C2070 GPU (ECC off) SpMV with different sorting strategies

Model problem: $\partial_t u + \nabla \cdot \mathbf{f} = 0$

• FEM approximation $(w_h, \partial_t u_h + \nabla \cdot \mathbf{f}_h)_{\Omega} = 0$ $\Leftrightarrow \quad (w_h, \partial_t u_h)_{\Omega} - (\nabla w_h, \mathbf{f}_h)_{\Omega} + \langle w_h, \mathbf{f}_h \cdot \mathbf{n} \rangle_{\Gamma} = 0$ $\forall w_h \in W_h$

Discrete upwinding, Zalesak's limiter, etc. involve edge-by-edge loops

Model problem: $\partial_t u + \nabla \cdot \mathbf{f} = 0$

• FEM approximation $(w_h, \partial_t u_h + \nabla \cdot \mathbf{f}_h)_{\Omega} = 0$ $\Leftrightarrow \quad (w_h, \partial_t u_h)_{\Omega} - (\nabla w_h, \mathbf{f}_h)_{\Omega} + \langle w_h, \mathbf{f}_h \cdot \mathbf{n} \rangle_{\Gamma} = 0$ $\forall w_h \in W_h$

Galerkin method edge-by-edge^(d)

$$\forall i: \quad \sum_{j} m_{ij} \dot{u}_{j} - \sum_{j} \mathbf{c}_{ji} \cdot \mathbf{f}_{j} + \sum_{j \neq i} \mathbf{s}_{ij} \cdot \mathbf{f}_{j} = 0$$

$$-\mathbf{c}_{ii} = \sum_{j \neq i} \mathbf{c}_{ij}$$

$$\forall i: \quad \sum_{j} m_{ij} \dot{u}_{j} + \sum_{j \neq i} \underbrace{\mathbf{c}_{ij} \cdot \mathbf{f}_{i} - \mathbf{c}_{ji} \cdot \mathbf{f}_{j}}_{g_{ij}} + \sum_{j} \mathbf{s}_{ij} \cdot \mathbf{f}_{j} = 0$$

Discrete upwinding, Zalesak's limiter, etc. involve edge-by-edge loops

Model problem: $\partial_t u + \nabla \cdot \mathbf{f} = 0$

• FEM approximation $(w_h, \partial_t u_h + \nabla \cdot \mathbf{f}_h)_{\Omega} = 0$ $\Leftrightarrow \quad (w_h, \partial_t u_h)_{\Omega} - (\nabla w_h, \mathbf{f}_h)_{\Omega} + \langle w_h, \mathbf{f}_h \cdot \mathbf{n} \rangle_{\Gamma} = 0$ $\forall w_h \in W_h$

Galerkin method edge-by-edge^(d)

$$\forall i: \quad \sum_{j} m_{ij} \dot{u}_{j} - \sum_{j} \mathbf{c}_{ji} \cdot \mathbf{f}_{j} + \sum_{j \neq i} \mathbf{s}_{ij} \cdot \mathbf{f}_{j} = 0$$

$$-\mathbf{c}_{ii} = \sum_{j \neq i} \mathbf{c}_{ij}$$

$$\forall i: \quad \sum_{j} m_{ij} \dot{u}_{j} + \sum_{j \neq i} \underbrace{\mathbf{c}_{ij} \cdot \mathbf{f}_{i} - \mathbf{c}_{ji} \cdot \mathbf{f}_{j}}_{g_{ij}} + \sum_{j} \mathbf{s}_{ij} \cdot \mathbf{f}_{j} = 0$$

Discrete upwinding, Zalesak's limiter, etc. involve edge-by-edge loops

Generation of edge lists

Given matrix in CSR format

data	1	2	3	$\underline{4}$	5	6	$\underline{7}$	8	<u>9</u>	10	11	<u>12</u>	13
colidx	1	2	4	1	2	5	3	4	1	3	4	2	5
rowidx	1	4	7	9	12	14							

Edge data structure

Generation of edge lists

Given matrix in CSR format

 $\begin{array}{l} \operatorname{sep} \leftarrow \operatorname{rowidx}; \ \operatorname{iedge}=0 \\ \operatorname{\textbf{for}} \ \mathbf{i}=1 \ \mathbf{to} \ \operatorname{nrow} \ \mathbf{do} \\ & | \ \operatorname{diagidx}[i]=\operatorname{sep}[i]++ \\ \operatorname{\textbf{for}} \ \mathbf{ij}=\operatorname{sep}[i] \ \mathbf{to} \ \operatorname{rowidx}[i+1]-1 \ \mathbf{do} \\ & | \ \mathbf{j}=\operatorname{colidx}[ij]; \ \mathbf{ji}=\operatorname{sep}[j]++ \\ & | \ \operatorname{edgelist}[++\operatorname{iedge}][] \leftarrow \{\mathbf{i},\mathbf{j},\mathbf{ij},\mathbf{ji}\} \end{array}$

data
$$\underline{1}$$
 2 3 $\underline{4}$ 5 6 $\underline{7}$ 8 $\underline{9}$ 10 11 $\underline{12}$ 13 colidx 1 2 4 1 2 5 3 4 1 3 4 2 5 rowidx 1 4 7 9 12 14 4 7 9 12 14

Edge data structure

Generation of edge lists

Given matrix in CSR format

sep \leftarrow rowidx; iedge=0 for i=1 to nrow do | diagidx[i]=sep[i]++ for ij=sep[i] to rowidx[i+1]-1 do | j=colidx[ij]; ji=sep[j]++ | edgelist[++iedge][] \leftarrow {i,j,ij,ji} at 5 6 7 8 9 10 11 12 13

• Edge data structure $\mathcal{E} = \{(i, j) : i < j \land \operatorname{supp}(\varphi_i) \cap \operatorname{supp}(\varphi_j) \neq \emptyset\}$

Pointer to diagonal coefficients
 irow | 1 2 3 4 5
 diagidx | 1 5 7 11 13

Parallel edge-based assembly

- Edge-coloring of the sparsity graph $\mathcal{E}=\cup_{c=1}^{N_{\rm colors}}\mathcal{E}_c$
- Vizing's theorem (e.g., NTL algorithm) $d_G^{\max} \leq N_{\text{colors}} \leq d_G^{\max} + 1$
- Parallel edge-by-edge loop

$$\begin{array}{c|c} \mathbf{for} \ \mathbf{c} = 1 \ \mathbf{to} \ \mathrm{ncolors} \ \mathbf{do} \\ & \mathbf{for all \ the} \ \mathrm{edges} \ (\mathrm{i},\mathrm{j}) \in \mathcal{E}_c \ \mathbf{do} \\ & | \ \mathbf{b}_i \ + = \mathbf{g}_{ij} \\ & | \ \mathbf{b}_j \ - = \mathbf{g}_{ij} \end{array}$$

Parallel edge-based assembly

- Vizing's theorem (e.g., NTL algorithm) $d_G^{\max} \leq N_{\text{colors}} \leq d_G^{\max} + 1$
- Parallel edge-by-edge loop

for c=1 to needoes do for all the edges $(i,j) \in \mathcal{E}_c$ do $| b_i += g_{ij}$ $b_j -= g_{ij}$

 <u>Example</u>: 2D Euler solver with linearized FCT, all nodal and edge-by-edge loops are parallelized

Conclusions and Outlook

- Algebraic flux correction schemes can be easily parallelized by regrouping the edges using edge-coloring techniques
- Nonconforming Rannacher-Turek element can be used within AFC-type methods (theoretical justification and numerics results)
- There is not (yet) a simple criterion that can be checked to estimate the accuracy of AFC-type methods a priori

If AFC works for $Q_1^{
m nc}$ it <u>may</u> work for other approximations as well

composite finite elements, NURBS, ...

Appendix I

Weak imposition of boundary conditions

Boundary conditions

 Y. Basilevs, T. Hughes, Weak imposition of Dirichlet boundary conditions in fluid mechanics, Computers & Fluids 32 (1) 2007, 12-26

$$\gamma=1$$
 consistent, adjoint-consistent

$$\beta_b = \frac{Cd}{h_b}$$

- $\gamma = -1$ consistent, adjoint-inconsistent
- E. Burman, A penalty free non-symmetric Nitsche type method for the weak imposition of boundary conditions, eprint arXiv:1106.5612v2 (Nov 2011) $\gamma = -1, \beta \equiv 0$

$$\begin{split} &\int_{\Omega} -\nabla w_h \cdot (\mathbf{v}u_h - d\nabla u_h) \mathrm{d}\mathbf{x} + \int_{\Gamma} w_h(\mathbf{v}u_h) \cdot \mathbf{n} \mathrm{d}s \\ &- \int_{\Gamma_{\mathrm{D}}} w_h(d\nabla u_h) \cdot \mathbf{n} \mathrm{d}s - \int_{\Gamma_{\mathrm{D}}} (\gamma d\nabla w_h) \cdot \mathbf{n} u_h \mathrm{d}s \\ &- \int_{\Gamma_{\mathrm{D}} \cap \Gamma_{\mathrm{in}}} (\mathbf{v}w_h) \cdot \mathbf{n} u_h \mathrm{d}s + \sum_{b=1}^{N_{\mathrm{eb}}} \int_{\Gamma_{\mathrm{D}} \cap \Gamma_b} \beta_b w_h u_h \mathrm{d}s \\ &= \int_{\Omega} w_h f \mathrm{d}\mathbf{x} + \int_{\Gamma_{\mathrm{N}}} w_h g \mathrm{d}s - \int_{\Gamma_{\mathrm{D}}} \gamma(d\nabla w_h) \cdot \mathbf{n} u_{\mathrm{D}} \mathrm{d}s \\ &- \int_{\Gamma_{\mathrm{D}} \cap \Gamma_{\mathrm{in}}} (\mathbf{v}w_h) \cdot \mathbf{n} u_{\mathrm{D}} \mathrm{d}s + \sum_{b=1}^{N_{\mathrm{eb}}} \int_{\Gamma_{\mathrm{D}} \cap \Gamma_b} \beta_b w_h u_{\mathrm{D}} \mathrm{d}s \end{split}$$

$$\begin{split} &\int_{\Omega} -\nabla w_{h} \cdot (\mathbf{v}u_{h} - d\nabla u_{h}) \mathrm{d}\mathbf{x} + \int_{\Gamma} w_{h}(\mathbf{v}u_{h}) \cdot \mathbf{n} \mathrm{d}s \\ &- \int_{\Gamma_{\mathrm{D}}} w_{h}(d\nabla u_{h}) \cdot \mathbf{n} \mathrm{d}s - \int_{\Gamma_{\mathrm{D}}} (\gamma d\nabla w_{h}) \cdot \mathbf{n} u_{h} \mathrm{d}s \\ &- \int_{\Gamma_{\mathrm{D}} \cap \Gamma_{\mathrm{in}}} (\mathbf{v}w_{h}) \cdot \mathbf{n} u_{h} \mathrm{d}s + \sum_{b=1}^{N_{\mathrm{eb}}} \int_{\Gamma_{\mathrm{D}} \cap \Gamma_{b}} \beta_{b} w_{h} u_{h} \mathrm{d}s \\ &= \int_{\Omega} w_{h} f \mathrm{d}\mathbf{x} + \int_{\Gamma_{\mathrm{N}}} w_{h} g \mathrm{d}s - \int_{\Gamma_{\mathrm{D}}} \gamma (d\nabla w_{h}) \cdot \mathbf{n} u_{\mathrm{D}} \mathrm{d}s \\ &- \int_{\Gamma_{\mathrm{D}} \cap \Gamma_{\mathrm{in}}} (\mathbf{v}w_{h}) \cdot \mathbf{n} u_{\mathrm{D}} \mathrm{d}s + \sum_{b=1}^{N_{\mathrm{eb}}} \int_{\Gamma_{\mathrm{D}} \cap \Gamma_{b}} \beta_{b} w_{h} u_{\mathrm{D}} \mathrm{d}s \end{split}$$

$$\begin{split} &\int_{\Omega} -\nabla w_{h} \cdot (\mathbf{v}u_{h} - d\nabla u_{h}) \mathrm{d}\mathbf{x} + \int_{\Gamma} w_{h}(\mathbf{v}u_{h}) \cdot \mathbf{n} \mathrm{d}s \\ &- \int_{\Gamma_{\mathrm{D}}} w_{h}(d\nabla u_{h}) \cdot \mathbf{n} \mathrm{d}s - \int_{\Gamma_{\mathrm{D}}} (\gamma d\nabla w_{h}) \cdot \mathbf{n} u_{h} \mathrm{d}s \\ &- \int_{\Gamma_{\mathrm{D}} \cap \Gamma_{\mathrm{in}}} (\mathbf{v}w_{h}) \cdot \mathbf{n} u_{h} \mathrm{d}s + \sum_{b=1}^{N_{\mathrm{eb}}} \int_{\Gamma_{\mathrm{D}} \cap \Gamma_{b}} \beta_{b} w_{h} u_{h} \mathrm{d}s \\ &= \int_{\Omega} w_{h} f \mathrm{d}\mathbf{x} + \int_{\Gamma_{\mathrm{N}}} w_{h} g \mathrm{d}s - \int_{\Gamma_{\mathrm{D}}} \gamma (d\nabla w_{h}) \cdot \mathbf{n} u_{\mathrm{D}} \mathrm{d}s \\ &- \int_{\Gamma_{\mathrm{D}} \cap \Gamma_{\mathrm{in}}} (\mathbf{v}w_{h}) \cdot \mathbf{n} u_{\mathrm{D}} \mathrm{d}s + \sum_{b=1}^{N_{\mathrm{eb}}} \int_{\Gamma_{\mathrm{D}} \cap \Gamma_{b}} \beta_{b} w_{h} u_{\mathrm{D}} \mathrm{d}s \end{split}$$

$$\int_{\Omega} -\nabla w_h \cdot (\mathbf{v}u_h - d\nabla u_h) d\mathbf{x} + \int_{\Gamma} w_h(\mathbf{v}u_h) \cdot \mathbf{n} ds$$
$$- \int_{\Gamma_D} w_h(d\nabla u_h) \cdot \mathbf{n} ds - \int_{\Gamma_D} (\gamma d\nabla w_h) \cdot \mathbf{n} u_h ds$$
$$- \int_{\Gamma_D \cap \Gamma_{in}} (\mathbf{v}w_h) \cdot \mathbf{n} u_h ds + \sum_{b=1}^{N_{eb}} \int_{\Gamma_D \cap \Gamma_b} \beta_b w_h u_h ds$$
$$= \int_{\Omega} w_h f d\mathbf{x} + \int_{\Gamma_N} w_h g ds - \int_{\Gamma_D} \gamma(d\nabla w_h) \cdot \mathbf{n} u_D ds$$
$$- \int_{\Gamma_D \cap \Gamma_{in}} (\mathbf{v}w_h) \cdot \mathbf{n} u_D ds + \sum_{b=1}^{N_{eb}} \int_{\Gamma_D \cap \Gamma_b} \beta_b w_h u_D ds$$

$$\int_{\Omega} -\nabla w_{h} \cdot (\mathbf{v}u_{h} - d\nabla u_{h}) d\mathbf{x} + \int_{\Gamma} w_{h}(\mathbf{v}u_{h}) \cdot \mathbf{n} ds$$
$$-\int_{\Gamma_{D}} w_{h}(d\nabla u_{h}) \cdot \mathbf{n} ds - \int_{\Gamma_{D}} (\gamma d\nabla w_{h}) \cdot \mathbf{n} u_{h} ds$$
$$-\int_{\Gamma_{D}\cap\Gamma_{in}} (\mathbf{v}w_{h}) \cdot \mathbf{n} u_{h} ds + \sum_{b=1}^{N_{eb}} \int_{\Gamma_{D}\cap\Gamma_{b}} \beta_{b} w_{h} u_{h} ds$$
$$= \int_{\Omega} w_{h} f d\mathbf{x} + \int_{\Gamma_{N}} w_{h} g ds - \int_{\Gamma_{D}} \gamma (d\nabla w_{h}) \cdot \mathbf{n} u_{D} ds$$
$$-\int_{\Gamma_{D}\cap\Gamma_{in}} (\mathbf{v}w_{h}) \cdot \mathbf{n} u_{D} ds + \sum_{b=1}^{N_{eb}} \int_{\Gamma_{D}\cap\Gamma_{b}} \beta_{b} w_{h} u_{D} ds$$

$$\int_{\Omega} -\nabla w_h \cdot (\mathbf{v}u_h - d\nabla u_h) d\mathbf{x} + \int_{\Gamma} w_h(\mathbf{v}u_h) \cdot \mathbf{n} ds$$
$$- \int_{\Gamma_D \cap \Gamma_{in}} (\mathbf{v}w_h) \cdot \mathbf{n} u_h ds \quad \longrightarrow \quad \int_{\Gamma_{out}} w_h \mathbf{v} \cdot \mathbf{n} u_h ds$$
$$= \int_{\Omega} w_h f d\mathbf{x}$$
$$- \int_{\Gamma_D \cap \Gamma_{in}} (\mathbf{v}w_h) \cdot \mathbf{n} u_D ds$$

ID convection-diffusion equation

Appendix II

Zalesak's multidimensional flux limiter

Zalesak's limiter: $P_i^{\pm} := 0, \quad Q_i^{\pm} := u_i^L \quad \forall nodes i$

Compute the sums of positive/negative antidiffusive fluxes $\begin{array}{ll}P_i^+ + = \max\{0, f_{ij}'\} & P_i^- + = \min\{0, f_{ij}'\} \\ P_j^+ - = \max\{0, -f_{ij}'\} & P_j^- - = \min\{0, -f_{ij}'\} \end{array} \quad \forall \texttt{edges} \ (i, j) \end{array}$

Determine the distance to the local maximum/minimum values $\begin{array}{l} Q_i^+ = \max\{Q_i^+, u_j^L\} & Q_i^- = \min\{Q_i^-, u_j^L\} \\ Q_j^+ = \max\{Q_j^+, u_i^L\} & Q_j^- = \min\{Q_j^-, u_i^L\} \end{array} \quad \forall \texttt{edges} \ (i, j) \end{array}$

Evaluate the nodal correction factors for the net increment $R_i^{\pm} = \min\left\{1, Q_i^{\pm}/P_i^{\pm}\right\} \quad \forall \texttt{nodes} \ i$

Check the sign of the prelimited antidiffusive flux and multiply it by

$$\alpha_{ij} = \begin{cases} \min\{R_i^+, R_j^-\}, & \text{if } f_{ij}' > 0\\ \min\{R_i^-, R_j^+\}, & \text{if } f_{ij}' < 0 \end{cases} \quad \forall \text{edges } (i, j) \end{cases}$$

References

- (a) J. Banks, J. Shadid, An Euler source term that develops prototype Z- pinch implosions intended for the evaluation of shock-hydro methods, *Internal. J. Numer. Methods Fluids* 61 (7) (2008).
- (b) A. Jameson, Computational algorithms for aerodynamic analysis and design. *Appl. Numer. Math.* 13 (1993).
- (c) D. Kuzmin, S. Turek, Flux correction tools for finite elements. J. Comp. Phys. 175 (2002).
- (d) D. Kuzmin, MM, S. Turek, High-resolution FEM-FCT schemes for multidimensional conservation laws. *Comput. Methods Appl. Mech. Engrg.* 193 (2004).
- (e) D. Kuzmin, On the design of algebraic flux correction schemes for quadratic finite elements. J. Comput. Appl. Math. 218 (2008).
- (f) D. Kuzmin, Explicit and Implicit FEM-FCT algorithms with flux linearization. J. Comput. Phys. 228 (2009).
- (g) D. Kuzmin, MM, J.N. Shadid, High-resolution finite element schemes for an idealized Z-pinch implosion model. Technical Report 410, Technische Universität Dortmund, 2010.
- (h) D. Kuzmin, MM, J.N. Shadid, M. Shashkov, Failsafe flux limiting and constrained data projection for equations of gas dynamics. J. Comput. Phys. 229 (2010).
- (i) D. Kuzmin, Algebraic flux correction I. Scalar conservation laws. In: D. Kuzmin, R. Löhner, S. Turek (eds.) *Flux-Corrected Transport: Principles, Algorithms, and Applications.* Springer, 2nd edition.
- (j) D. Kuzmin, MM, M. Gurris, Algebraic flux correction II. Compressible flow problems. In: D. Kuzmin, R. Löhner, S. Turek (eds.) *Flux-Corrected Transport: Principles, Algorithms, and Applications.* Springer, 2nd edition.
- (k) MM, On the design of non-conforming high-resolution finite element schemes. In: J. Eberhardsteiner et al. (ads), Proc. of ECCOMAS, 2012.
- (I) MM, Algebraic flux correction for nonconforming finite element discretizations of scalar transport problems. *Computing*. DOI: 10.1007/s00607-012-0276-y.
- (m) R. Rannacher, S. Turek, A simple nonconforming quadrilateral Stokes element. *Numer. Meth. PDEs*, 8 (1992).
- (n) M. Crouzeix, P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equation. I. Revue française d'automatique, informatique, recherche opérationnelle. Mathématique, 7 (1973).