Quantum=accelerated scientific computing

Matthias Möller Delft Institute of Applied Mathematics

About me

- Assistant Professor in Numerical Analysis at TU Delft since 2013 (before TU Dortmund)
- Research interests:
- FEM/IGA for (compressible) flow problems
- High-resolution and high-order methods
- Efficient multilevel solution methods
- Hybrid particle mesh methods (MPM, OTM)
- Heterogeneous high-performance computing
- Quantum-accelerated scientific computing

State-of-the art in quantumaccelerated scientific computing and how we try to advance it

Accelerated computing

- Heterogeneous compute nodes with multi-socket, multi-core CPUs and general-purpose accelerators (GPUs, FPGAs, vector processors, ...)
- Current and future trend: special-purpose accelerators (Google's TPUs, ASICs, ...)
- Vision: use QPUs as functional accelerators
- Philosophy: Hardware-oriented Numerics = co-design of hardware-aware numerical methods and their hardware-optimized $\mathrm{H}^{2} \mathrm{PC}$ implementation

QPUs

- Discrete gate model:
- Google "Bristlecone": 72(?) hw-qubits
- IBM Q Experience: 4-16/20(?) hw-qubits
- Intel "Tangle Lake": 49(?) hw-qubits
- Rigetti: 19/128(?) hw-qubits
- Atos QLM: 40 sw-qubits
- QuTech QX/OpenQL: 26 sw-qubits
- TNO Quantum Inspire: 31-37 sw-qubits
- Quantum annealing:
-D-Wave system 2000Q: 2048/5000(?) qubits

Quantum SDKs

- Quantum Assembly/Instruction languages:
- AQASM: Atos QML
- cQASM: TNO Quantum Inspire, QuTech QX
- OpenQASM: IBM Q Experience, Google
- Quil: Rigetti simulator and cloud platform
- SDKs (in Python):
- pyAqasm: Atos (AQASM in/out)
- pyQuil: Rigetti (Quil in/out)
- Circ: Google (OpenQASM out, no in)
- QX/OpenQL (C++): QuTech (cQASM in/out)
- ProjectQ: ETHZ (no xQASM in/out)
- QisKit: IBM (OpenQASM in/output)
- Quantum Development Kit (Q\#): Microsoft (OpenQASM in/out)

Proprietary workflow

- Python script \rightarrow [xQASM kernel] \rightarrow QPU-optimized binary code \rightarrow QSim/QComputer \rightarrow post-processing in Python
- Pros:
- Exploitation of knowledge of QPU internals in optimization
- Flat learning curve to get started with basic quantum algorithm
- Cons:
- Proprietary Q-toolchains (compilers, optimizers) and workflows
- Re-inventing the wheel in each SDK (only prototype circuits)
- No direct comparison of algorithms between QPUs possible
- None of the tools aims at scientific computing at large scale
- Investment insecurity (NVIDIA CUDA vs. ATI Stream SDK)

LibKet

- Kwantum expression template Library
- Header-only C++14 open-source library (soon) available at https://gitlab.com/mmoelle1/LibKet
- Planning: $1^{\text {st }}$ official release before this summer with full support for all aforemention Q-backends
- Long-term vision: LibKet becomes the Eigen library of the Q-accelerated scientific computing community

LibKet

- Provides C++ wrappers for all basic quantum gates and commonly used circuits templated over \#qubits
auto expr = ... h(all(x(sel<n>(init()))));

LibKet

- Provides wrappers for all basic quantum gates and commonly used circuits templated over \#qubits
auto expr = ... h(all(x(sel<n>(init()))));

LibKet

- Provides wrappers for all basic quantum gates and commonly used circuits templated over \#qubits
auto expr = ... h(all(x(sel<n>(init()))));

LibKet

- Provides wrappers for all basic quantum gates and commonly used circuits templated over \#qubits
auto expr = ... h(all(x(sel<n>(init()))));

LibKet

- Provides wrappers for all basic quantum gates and commonly used circuits templated over \#qubits
auto expr = ... h(all(x(sel<n>(init()))));

LibKet

- Synthesizes quantum expressions into rule-based optimized xQASM (QX/OpenQL) quantum kernels

```
# cQASM 1.0
version 1.0
qubits 6
x q[5]
h q[0, 1, 2, 3,4,5]
```

OPENQASM 2.0;
include "qelib1.inc";
qreg q[6];
$\times \mathrm{q}[5]$;
h q[0];
h q[1];
h q[2];

LibKet

- Bidirectional communication between C++ host code and Python-based QSim/QComputer environment

```
QData<6, OpenQASMv2> backend;
json result = expr(backend).execute();
cout << result << endl;
[{"data":{"counts":{"0x0":22, "0x1":15, "0x10":18
, "0x11":11, "0x12":15, "0x13":11, "0x14":14, "0x15"
:20,"0x16":12,"0x17":13, "0x18":15,"0x19":16 ...
```


LibKet

- Will allow end-user to develop quantum algorithms from scratch but also to exploit Q-acceleration using ready-to-use pre-built quantum expressions

```
auto expr = qft<...>(range<0,5>(init()));
```

- Will provide intrinsic types and arithmetic ops:

```
QInt<6> a(1), b(1); a+=b;
QPosit<8,1> a(1.3), b(2.3); a+=b;
```


LibKet workflow

- C++ host code
\rightarrow auto-generate rule-based optimized xQASM kernel
\rightarrow apply proprietary toolchain (compile \& execute)
\rightarrow import results into C++ host code via JSON objects
- Pros:
- Develop Q-accelerated scientific application in C++ only
- Develop backend-independent quantum algorithms (QA) just once
- Exploit all benefits (QPU-optimization) from proprietary toolchains
- Compare different QPUs at the cost of a single code compilation
- Cons: None? Try it yourself and please tell me if any!

Past and ongoing activities

- Bachelor projects:
- v.d. Lans: Multi-search Groover, Q-add/sub
- Looman: Q-add with simulated quantum errors QC1.0
- v.d. Linde: Posit arithmetics
- Driebergen: Posit arithmetics for QC
- Ubbes: Quantum Linear Solver Algorithm (QLSA) QC2.0
- Schalkers (internship at TNO): LibKet, ...
- Collaborations:
- TNO, TU Delft Quantum \& Computer Eng., SurfSara

A first quantum algorithm: 1+1=2

- Integer addition:
$-a=1 ; b=1 ; c=a+b ; X$ (no-cloning principle)
$-a=1 ; b=1 ; a+=b ;$
- Classical adder circuits:
- Must be reversible (all QAs are reversible!)
- Must be realizable with quantum gates only
- Should need few ancilla qubits (20-40 qubits)

A first quantum algorithm: 1+1=2

Carry Gate

Cuccaro et al.: A new quantum ripple-carry addition circuit (2008)

Another quantum algorithm: 1+1=2

no extra ancilla qubits needed $)$

Another quantum algorithm: 1+1=2

Draper: Addition on a quantum computer (2000)

Using LibKet: 1+1=2

- LibKet quantum expression:

```
auto expr =
        qftdag( range<n,n>( add( range<0,n>( all() ), 
```

));
 - Or simply (planned for $1^{\text {st }}$ official release): QInt<6> $a(1), b(1) ; a+=b ;$

Towards practical QC: $1+1 \cong 2$

1000 QX simulator runs with depolarizing noise error model

	0,1		$10^{-\frac{3}{2}}$		0,01		$10^{-\frac{5}{2}}$	
1	0.27045	0.3793	0.50545	0.2752	0.78965	0.1233	0.92285	0.0463
ヘ 2	0.134061	0.221523	0.165182	0.209176	0.451353	0.134284	0.762621	0.0570876
ᄃ 3	0.0601436	0.112097	0.0683512	0.116162	0.191802	0.105916	0.540766	0.0754021
+ 4	0.0336509	0.0611537	0.0351125	0.0589036	0.064375	0.0645881	0.306778	0.0802711
ᄃ 5					0.0224336	0.031892	0.154869	0.0575671
今 6					0.00798384	0.0176539	0.0654961	0.033179
7					0.00398747	0.0076473	0.0252142	0.0167067
8					0.00254026	0.00363275	0.00834128	0.00823629

Standard circuit: prob. correct (left), largest prob. wrong answer (right)

Looman: Implementation and Analysis of an Algorithm on Positive Integer Addition for Quantum Computing (2018)

Towards practical QC: $1+1 \cong 2$

1000 QX simulator runs with depolarizing noise error model

	0,1		$10^{-\frac{3}{2}}$		0,01		$10^{-\frac{5}{2}}$	
1	0.29475	0.3695	0.54555	0.27185	0.8158	0.11735	0.93645	0.04195
ヘ 2	0.110416	0.230068	0.239152	0.203304	0.569495	0.115691	0.837026	0.0445888
ᄃ 3	0.0581316	0.114572	0.096711	0.122477	0.341537	0.102147	0.697436	0.0509187
+ 4	0.0259028	0.0583002	0.0382769	0.0672328	0.183066	0.0726129	0.543162	0.0579935
ᄃ 5					0.0839273	0.0450361	0.407117	0.0574072
-18					0.0412412	0.0270095	0.283642	0.049151
7					0.0177059	0.0131818	0.191996	0.0404665
8					0.00647699	0.00675828	0.116269	0.0290022

Optimized circuit: prob. correct (left), largest prob. wrong answer (right)

Looman: Implementation and Analysis of an Algorithm on Positive Integer Addition for Quantum Computing (2018)

Quantum computing in a nutshell and why it's so difficult to make progress

QC in a nutshell

- A single qubit state:

$$
\begin{aligned}
& |\psi\rangle=\alpha|0\rangle+\beta|1\rangle, \\
& \alpha, \beta \in \mathbb{C},|\alpha|^{2}+|\beta|^{2}=1
\end{aligned}
$$

$$
|\psi\rangle=\cos \frac{\theta}{2}|0\rangle+e^{i \varphi} \sin \frac{\theta}{2}|1\rangle
$$

QC in a nutshell

- Hadamard (H) gate:

$$
H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

Unitary operators, i.e. $U U^{\dagger}=I$ or $\langle u, v\rangle_{H}=\langle U u, U v\rangle_{H}, \forall u, v \in H$

$$
H|\psi\rangle=\frac{\alpha+\beta}{\sqrt{2}}|0\rangle+\frac{\alpha-\beta}{\sqrt{2}}|1\rangle
$$

QC in a nutshell

Farouk et al.: Architecture of multicast centralized key management scheme using Quantum key distribution and classical symmetric encryption (2014)

Grover's search algorithm

TUDelft

Grover's search algorithm

Long-term vision

Microprocessors and Microsystems 66 (2019) 67-71

A conceptual framework for quantum accelerated automated design optimization
Matthias Möller ${ }^{\text {a,*, }}$, Cornelis Vuik ${ }^{\text {a }}$
Delft University of Technology, Delft Institute of Applied Mathematics (DIAM), Van Mourik Broekmanweg 6, XE Delft 2628, The Netherlands

Design optimization

- Abstract problem:

$$
\min _{\boldsymbol{\alpha} \in \mathcal{D}} \mathcal{J}(U(\boldsymbol{\alpha}) ; Y) \quad \text { s.t. } \quad \mathcal{R}(U(\boldsymbol{\alpha}) ; Y)=0
$$

- Admissible design parameters $\alpha \in \mathcal{D}$
- Generated design (control) $U(\boldsymbol{\alpha})$
- Solution $Y=Y(U(\boldsymbol{\alpha}))$ to PDE in residual form
- Cost functional $\mathcal{J}(\cdot)$ to be minimized

Academic model problem

- 2D Poisson equation:

$$
\begin{aligned}
-\Delta u & =f \text { in } \Omega(\alpha) \\
u & =0 \text { on } \Gamma(\alpha)
\end{aligned}
$$

- Design parameter:

$$
y(x)=\alpha\left(x-x^{2}\right), \alpha^{\min } \leq \alpha \leq \alpha^{\max }
$$

- Optimization problem:
- Minimize L_{2}-error between solution u and a given reference profile u^{*} by adjusting the shape of the domain boundary at the bottom

Q-accelerated linear solvers

- Discretized problem:

$$
\min _{\alpha \in \mathcal{D}}\left(\int_{\Omega(\alpha)} y_{h}^{2} d x\right)^{\frac{1}{2}} \approx \min _{\alpha \in \mathcal{D}}\left(y_{h}^{T} M y_{h}\right)^{\frac{1}{2}}
$$

such that

$$
\begin{array}{lll}
\Gamma & \text { s-sparse SPD well-conditioned matrix } \\
A_{h} y_{h}=f_{h}-A_{h} u_{h}^{*} & \\
y_{h}=u_{h}-u_{h}^{*} & \text { QLSA }
\end{array}
$$

Q-accelerated optimization

- Taylor expansion about the optimal state $\boldsymbol{\alpha}^{*}$:

$$
\begin{gathered}
\mathcal{J}\left(\boldsymbol{\alpha}^{(k)}\right)-\mathcal{J}\left(\boldsymbol{\alpha}^{*}\right)= \\
\sum_{i=1}^{\operatorname{dim} \mathcal{D}} \frac{\left.\left.\partial \mathcal{J}\right|_{i}\right|_{\alpha^{*}}}{\left.\partial \alpha_{i} \sum_{i, j=1}^{(k)}-\alpha_{i}^{*}\right)} \\
+\mathcal{O}\left(\left\|\boldsymbol{\alpha}^{(k)}-\boldsymbol{\alpha}^{*}\right\|^{3}\right)
\end{gathered}
$$

Q-accelerated optimization

- Positive-definite quadratic form:

$$
\mathcal{Q}\left(\boldsymbol{\alpha}^{(k)}\right)=\left.\frac{1}{2} \sum_{i, j=1}^{\operatorname{dim} \mathcal{D}}\left(\alpha_{i}^{(k)}-\alpha_{i}^{*}\right) \frac{\partial^{2} \mathcal{J}}{\partial \alpha_{i} \partial \alpha_{j}}\right|_{\boldsymbol{\alpha}^{*}}\left(\alpha_{i}^{(k)}-\alpha_{i}^{*}\right)
$$

Potential Q-speedup

- QLSA:
- CG method: $\quad \mathcal{O}(N s \kappa \log (1 / \epsilon))$
- HHL (2009): $\quad \mathcal{O}\left(\log (N) s^{2} \kappa^{2} / \epsilon\right)$
- Ambainis (2012): $\quad \mathcal{O}\left(\log (N) s^{2} \kappa / \epsilon\right)$
- Childs et al. (2017): $\quad \mathcal{O}($ polylog $(s \kappa / \epsilon) s \kappa)$
- QOpt:
- Yao (1975): $\quad \mathcal{O}\left(\operatorname{dim} \mathcal{D}^{2}\right)$
- Jordan (2008): $\quad \mathcal{O}(\operatorname{dim} \mathcal{D})$
- Other:
- Cao et al. (2013): FDM Q-Poisson solver
- Montanaro et al. (2016): FEM Q-Poisson solver
AIREUS Commercial Aircraft Helicopters Defence Space Company Newsroom Q

Airbus Home s Innovation s Tech Challenges \& Competitions * Airbus Quantum Computing Challenge

Aircraft Climb Optimization

CFD on Quantum Computers

Surrogate modelling of PDEs

Airbus Quantum Computing Challenge

Bringing flight physics into the Quantum Era

Wrap-up

- LibKet:
- Early adopter usage and feedback highly appreciated
- Q-accelerated shape optimization:
- Feedback on concept and collaboration welcome
- Possible collaboration with NLR:
- Airbus Quantum Challenge and other topics
- Q-Flagship project (coordinated by K. Bertels)

Thank you for your attention!

