Quantum-accelerated scientific computing Matthias Möller Delft Institute of Applied Mathematics

JDelft

About me

 Assistant Professor in Numerical Analysis at TU Delft since 2013 (before TU Dortmund)

• Research interests:

- FEM/IGA for (compressible) flow problems
- High-resolution and high-order methods
- Efficient multilevel solution methods
- Hybrid particle mesh methods (MPM, OTM)
- Heterogeneous high-performance computing
- Quantum-accelerated scientific computing

State-of-the art in quantumaccelerated scientific computing and how we try to advance it

Accelerated computing

- Heterogeneous compute nodes with multi-socket, multi-core CPUs and general-purpose accelerators (GPUs, FPGAs, vector processors, ...)
- Current and future trend: special-purpose accelerators (Google's TPUs, ASICs, ...)
- **Vision**: use **QPUs** as functional accelerators
- Philosophy: Hardware-oriented Numerics = co-design of hardware-aware numerical methods and their hardware-optimized H²PC implementation

QPUs

Discrete gate model:

- Google "Bristlecone": 72(?) hw-qubits
- IBM Q Experience: 4-16/20(?) hw-qubits
- Intel "Tangle Lake": 49(?) hw-qubits
- Rigetti: 19/128(?) hw-qubits
- Atos QLM: 40 sw-qubits
- QuTech QX/OpenQL: 26 sw-qubits
- TNO Quantum Inspire: 31-37 sw-qubits

Quantum annealing:

– D-Wave system 2000Q: 2048/5000(?) qubits

20 hw 40 sw qubits

Quantum SDKs

Quantum Assembly/Instruction languages:

- AQASM: Atos QML
- cQASM: TNO Quantum Inspire, QuTech QX
- OpenQASM: IBM Q Experience, Google
- Quil: Rigetti simulator and cloud platform
- **SDKs** (in Python):
 - pyAqasm: Atos (AQASM in/out)
 - pyQuil: Rigetti (Quil in/out)
 - Circ: Google (OpenQASM out, no in)
 - QX/OpenQL (C++): QuTech (cQASM in/out)
 - ProjectQ: ETHZ (no xQASM in/out)
 - QisKit: IBM (OpenQASM in/output)
 - Quantum Development Kit (Q#): Microsoft (OpenQASM in/out)

Proprietary workflow

Python script → [xQASM kernel] → QPU-optimized binary code → QSim/QComputer → post-processing in Python

• Pros:

- Exploitation of knowledge of QPU internals in optimization
- Flat learning curve to get started with basic quantum algorithm

Cons:

- Proprietary Q-toolchains (compilers, optimizers) and workflows
- Re-inventing the wheel in each SDK (only prototype circuits)
- No direct comparison of algorithms between QPUs possible
- None of the tools aims at scientific computing at large scale
- Investment insecurity (NVIDIA CUDA vs. ATI Stream SDK)

- Kwantum expression template Library
- Header-only C++14 open-source library (soon) available at <u>https://gitlab.com/mmoelle1/LibKet</u>
- Planning: 1st official release before this summer with full support for all aforemention Q-backends
- Long-term vision: LibKet becomes the Eigen library of the Q-accelerated scientific computing community

 Provides C++ wrappers for all basic quantum gates and commonly used circuits templated over #qubits

auto expr = ... h(all(x(sel<n>(init()))));

 Provides wrappers for all basic quantum gates and commonly used circuits templated over #qubits

auto expr = ... h(all(x(sel<n>(init()))));

 Provides wrappers for all basic quantum gates and commonly used circuits templated over #qubits

auto expr = ... h(all(x(sel<n>(init()))));

 Provides wrappers for all basic quantum gates and commonly used circuits templated over #qubits

auto expr = ... h(all(x(sel<n>(init())));

 Provides wrappers for all basic quantum gates and commonly used circuits templated over #qubits

auto expr = ... h(all(x(sel<n>(init())));

...

LIB

 Synthesizes quantum expressions into rule-based optimized xQASM (QX/OpenQL) quantum kernels

...

```
# cQASM 1.0
version 1.0
qubits 6
x q[5]
h q[0,1,2,3,4,5]
```

```
OPENQASM 2.0;
include "qelib1.inc";
qreg q[6];
x q[5];
h q[0];
h q[1];
h q[2];
```


 Bidirectional communication between C++ host code and Python-based QSim/QComputer environment

```
QData<6, OpenQASMv2> backend;
json result = expr(backend).execute();
cout << result << endl;</pre>
```

[{"data":{"counts":{"0x0":22,"0x1":15,"0x10":18
,"0x11":11,"0x12":15,"0x13":11,"0x14":14,"0x15"
:20,"0x16":12,"0x17":13,"0x18":15,"0x19":16 ...

 Will allow end-user to develop quantum algorithms from scratch but also to exploit Q-acceleration using ready-to-use pre-built quantum expressions

auto expr = qft<...>(range<0,5>(init()));

• Will provide intrinsic types and arithmetic ops:

QInt<6> a(1), b(1); a+=b; QPosit<8,1> a(1.3), b(2.3); a+=b;

LibKet workflow

- C++ host code
 - \rightarrow auto-generate rule-based optimized xQASM kernel
 - \rightarrow apply proprietary toolchain (compile & execute)
 - \rightarrow import results into C++ host code via JSON objects

• Pros:

- Develop Q-accelerated scientific application in C++ only
- Develop backend-independent quantum algorithms (QA) just once
- Exploit all benefits (QPU-optimization) from proprietary toolchains
- Compare different QPUs at the cost of a single code compilation

- **TU**Delft
- **Cons**: None? Try it yourself and please tell me if any!

Past and ongoing activities

Bachelor projects:

- v.d. Lans: Multi-search Groover, Q-add/sub
- Looman: Q-add with simulated quantum errors
 QC1.0
- v.d. Linde: Posit arithmetics
- Driebergen: Posit arithmetics for QC
- Ubbes: Quantum Linear Solver Algorithm (QLSA) QC2.0
- Schalkers (internship at TNO): LibKet, ...

Collaborations:

- TNO, TU Delft Quantum & Computer Eng., SurfSara

A first quantum algorithm: 1+1=2

• Integer addition:

- a = 1; b = 1; c = a+b; X (no-cloning principle)
- a = 1; b = 1; a += b; √

Classical adder circuits:

- Must be reversible (all QAs are reversible!)
- Must be realizable with quantum gates only
- Should need few ancilla qubits (20-40 qubits)

A first quantum algorithm: 1+1=2

n extra ancilla qubits needed 😕

Cuccaro et al.: A new quantum ripple-carry addition circuit (2008)

Another quantum algorithm: 1+1=2

no extra ancilla qubits needed ©

Draper: Addition on a quantum computer (2000)

21

Another quantum algorithm: 1+1=2

Draper: Addition on a quantum computer (2000)

Using LibKet: 1+1=2

• LibKet quantum expression:

Or simply (planned for 1st official release):
 QInt<6> a(1), b(1); a += b;

Towards practical QC: $1+1 \cong 2$

1000 QX simulator runs with depolarizing noise error model

		0,1		$10^{-\frac{3}{2}}$		0,01		$10^{-\frac{5}{2}}$	
QInt <n></n>	1	0.27045	0.3793	0.50545	0.2752	0.78965	0.1233	0.92285	0.0463
	2	0.134061	0.221523	0.165182	0.209176	0.451353	0.134284	0.762621	0.0570876
	3	0.0601436	0.112097	0.0683512	0.116162	0.191802	0.105916	0.540766	0.0754021
	4	0.0336509	0.0611537	0.0351125	0.0589036	0.064375	0.0645881	0.306778	0.0802711
	5					0.0224336	0.031892	0.154869	0.0575671
	6					0.00798384	0.0176539	0.0654961	0.033179
	7					0.00398747	0.0076473	0.0252142	0.0167067
	8					0.00254026	0.00363275	0.00834128	0.00823629

Standard circuit: prob. correct (left), largest prob. wrong answer (right)

Looman: Implementation and Analysis of an Algorithm on Positive Integer Addition for Quantum Computing (2018)

Towards practical QC: $1+1 \cong 2$

1000 QX simulator runs with depolarizing noise error model

	0,1		$10^{-\frac{3}{2}}$		0,01		$10^{-\frac{5}{2}}$		
	1	0.29475	0.3695	0.54555	0.27185	0.8158	0.11735	0.93645	0.04195
QInt <n></n>	2	0.110416	0.230068	0.239152	0.203304	0.569495	0.115691	0.837026	0.0445888
	3	0.0581316	0.114572	0.096711	0.122477	0.341537	0.102147	0.697436	0.0509187
	4	0.0259028	0.0583002	0.0382769	0.0672328	0.183066	0.0726129	0.543162	0.0579935
	5					0.0839273	0.0450361	0.407117	0.0574072
	6					0.0412412	0.0270095	0.283642	0.049151
Ŭ	7					0.0177059	0.0131818	0.191996	0.0404665
	8					0.00647699	0.00675828	0.116269	0.0290022

Optimized circuit: prob. correct (left), largest prob. wrong answer (right)

Looman: Implementation and Analysis of an Algorithm on Positive Integer Addition for Quantum Computing (2018)

Quantum computing in a nutshell and why it's so difficult to make progress

QC in a nutshell

• A single qubit state:

$$\begin{aligned} |\psi\rangle &= \alpha |0\rangle + \beta |1\rangle, \\ \alpha, \beta \in \mathbb{C}, |\alpha|^2 + |\beta|^2 = 1 \end{aligned}$$

$$|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\varphi}\sin\frac{\theta}{2}|1\rangle$$

QC in a nutshell

• Hadamard (H) gate:

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix}$$

Unitary operators, i.e. $UU^{\dagger} = I$ or $\langle u, v \rangle_{H} = \langle Uu, Uv \rangle_{H}, \forall u, v \in H$

$$H|\psi\rangle = \frac{\alpha + \beta}{\sqrt{2}} |0\rangle + \frac{\alpha - \beta}{\sqrt{2}} |1\rangle$$

QC in a nutshell

Farouk et al.: Architecture of multicast centralized key management scheme using Quantum key distribution and classical symmetric encryption (2014)

v.d. Lans: QAs and their implementation on QC simulators (2017)

Wright, Tseng: Grover's algorithm (2015)

31

Wright, Tseng: Grover's algorithm (2015)

32

Wright, Tseng: Grover's algorithm (2015)

Wright, Tseng: Grover's algorithm (2015)

Wright, Tseng: Grover's algorithm (2015)

35

Long-term vision

Microprocessors and Microsystems 66 (2019) 67-71

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

A conceptual framework for quantum accelerated automated design optimization

Matthias Möller^{a,*}, Cornelis Vuik^a

Delft University of Technology, Delft Institute of Applied Mathematics (DIAM), Van Mourik Broekmanweg 6, XE Delft 2628, The Netherlands

Design optimization

Abstract problem:

 $\min_{\alpha \in \mathcal{D}} \mathcal{J}(U(\alpha); Y) \quad \text{s.t.} \quad \mathcal{R}(U(\alpha); Y) = 0$

- Admissible design parameters $\alpha \in \mathcal{D}$
- Generated design (control) $U(\alpha)$
- Solution $Y = Y(U(\alpha))$ to PDE in residual form
- Cost functional $\mathcal{J}(\cdot)$ to be minimized

Academic model problem

• 2D Poisson equation:

 $-\Delta u = f \text{ in } \Omega(\alpha)$ $u = 0 \text{ on } \Gamma(\alpha)$

Design parameter:

$$y(x) = \alpha(x - x^2), \alpha^{min} \le \alpha \le \alpha^{ma}$$

Optimization problem:

- Minimize L_2 -error between solution u and a given reference profile u^* by adjusting the shape of the domain boundary at the bottom

Q-accelerated linear solvers

Discretized problem:

$$\min_{\alpha \in \mathcal{D}} \left(\int_{\Omega(\alpha)} y_h^2 dx \right)^{\frac{1}{2}} \approx \min_{\alpha \in \mathcal{D}} \left(y_h^T M y_h \right)^{\frac{1}{2}}$$
 sparse matrix

such that

s-sparse SPD well-conditioned matrix

$$A_h y_h = f_h - A_h u_h^*$$
$$y_h = u_h - u_h^*$$

39

Q-accelerated optimization

Taylor expansion about the optimal state α^{*}:

Q-accelerated optimization

Positive-definite quadratic form:

$$Q(\boldsymbol{\alpha}^{(k)}) = \frac{1}{2} \sum_{i,j=1}^{\dim \mathcal{D}} \left(\alpha_i^{(k)} - \alpha_i^* \right) \frac{\partial^2 \mathcal{J}}{\partial \alpha_i \partial \alpha_j} \bigg|_{\boldsymbol{\alpha}^*} \left(\alpha_i^{(k)} - \alpha_i^* \right)$$

41

Potential Q-speedup

• QLSA:

- CG method:
- HHL (2009):
- Ambainis (2012): $\mathcal{O}(\log(N)s^2\kappa/\epsilon)$
- Childs et al. (2017): $\mathcal{O}(\operatorname{polylog}(s\kappa/\epsilon)s\kappa)$

 $\mathcal{O}(Ns\kappa \log(1/\epsilon))$ $\mathcal{O}(\log(N)s^{2}\kappa^{2}/\epsilon)$ $\mathcal{O}(\log(N)s^{2}\kappa/\epsilon)$ $\mathcal{O}(\operatorname{polylog}(s\kappa/\epsilon)s\kappa)$

• QOpt:

– Yao (1975):

– Jordan (2008):

 $\begin{array}{l} \mathcal{O}(\dim \mathcal{D}^2) \\ \mathcal{O}(\dim \mathcal{D}) \end{array}$

• Other:

- Cao et al. (2013): FDM Q-Poisson solver
- Montanaro et al. (2016): FEM Q-Poisson solver

Airbus Home -> Innovation -> Tech Challenges & Competitions -> Airbus Quantum Computing Challenge

Aircraft Climb Optimization

CFD on Quantum Computers

Surrogate modelling of PDEs

Wingbox Design Optimization

Aircraft Loading Optimization

Airbus Quantum Computing Challenge

Bringing flight physics into the Quantum Era

Wrap-up

LibKet:

Early adopter usage and feedback highly appreciated

Q-accelerated shape optimization:

Feedback on concept and collaboration welcome

Possible collaboration with NLR:

- Airbus Quantum Challenge and other topics
- Q-Flagship project (coordinated by K. Bertels)

Thank you for your attention!

