
1

Matthias Möller
Delft Institute of Applied Mathematics

2

About me

• Assistant Professor in Numerical Analysis at
TU Delft since 2013 (before TU Dortmund)

• Research interests:
– FEM/IGA for (compressible) flow problems

– High-resolution and high-order methods

– Efficient multilevel solution methods

– Hybrid particle mesh methods (MPM, OTM)

– Heterogeneous high-performance computing

– Quantum-accelerated scientific computing

3

State-of-the art in quantum-
accelerated scientific computing and
how we try to advance it

4

Accelerated computing
• Heterogeneous compute nodes with multi-socket,

multi-core CPUs and general-purpose accelerators
(GPUs, FPGAs, vector processors, …)

• Current and future trend: special-purpose
accelerators (Google’s TPUs, ASICs, …)

• Vision: use QPUs as functional accelerators

• Philosophy: Hardware-oriented Numerics =
co-design of hardware-aware numerical methods
and their hardware-optimized H2PC implementation

5

QPUs
• Discrete gate model:

– Google “Bristlecone”: 72(?) hw-qubits
– IBM Q Experience: 4-16/20(?) hw-qubits
– Intel ”Tangle Lake”: 49(?) hw-qubits
– Rigetti: 19/128(?) hw-qubits
– Atos QLM: 40 sw-qubits
– QuTech QX/OpenQL: 26 sw-qubits
– TNO Quantum Inspire: 31-37 sw-qubits

• Quantum annealing:
– D-Wave system 2000Q: 2048/5000(?) qubits

20 hw
40 sw
qubits

6

Quantum SDKs
• Quantum Assembly/Instruction languages:

– AQASM: Atos QML
– cQASM: TNO Quantum Inspire, QuTech QX
– OpenQASM: IBM Q Experience, Google
– Quil: Rigetti simulator and cloud platform

• SDKs (in Python):
– pyAqasm: Atos (AQASM in/out)
– pyQuil: Rigetti (Quil in/out)
– Circ: Google (OpenQASM out, no in)
– QX/OpenQL (C++): QuTech (cQASM in/out)
– ProjectQ: ETHZ (no xQASM in/out)
– QisKit: IBM (OpenQASM in/output)
– Quantum Development Kit (Q#): Microsoft (OpenQASM in/out)

7

Proprietary workflow
• Python script → [xQASM kernel] → QPU-optimized binary

code → QSim/QComputer → post-processing in Python

• Pros:
– Exploitation of knowledge of QPU internals in optimization
– Flat learning curve to get started with basic quantum algorithm

• Cons:
– Proprietary Q-toolchains (compilers, optimizers) and workflows
– Re-inventing the wheel in each SDK (only prototype circuits)
– No direct comparison of algorithms between QPUs possible
– None of the tools aims at scientific computing at large scale
– Investment insecurity (NVIDIA CUDA vs. ATI Stream SDK)

8

LibKet
• Kwantum expression template Library

• Header-only C++14 open-source library (soon)
available at https://gitlab.com/mmoelle1/LibKet

• Planning: 1st official release before this summer with
full support for all aforemention Q-backends

• Long-term vision: LibKet becomes the Eigen library
of the Q-accelerated scientific computing community

https://gitlab.com/mmoelle1/LibKet

9

LibKet
• Provides C++ wrappers for all basic quantum gates

and commonly used circuits templated over #qubits

auto expr = … h(all(x(sel<n>(init()))));

10

LibKet
• Provides wrappers for all basic quantum gates and

commonly used circuits templated over #qubits

auto expr = … h(all(x(sel<n>(init()))));

11

LibKet
• Provides wrappers for all basic quantum gates and

commonly used circuits templated over #qubits

auto expr = … h(all(x(sel<n>(init()))));

12

LibKet
• Provides wrappers for all basic quantum gates and

commonly used circuits templated over #qubits

auto expr = … h(all(x(sel<n>(init()))));

13

LibKet
• Provides wrappers for all basic quantum gates and

commonly used circuits templated over #qubits

auto expr = … h(all(x(sel<n>(init()))));

14

LibKet
• Synthesizes quantum expressions into rule-based

optimized xQASM (QX/OpenQL) quantum kernels
cQASM 1.0 OPENQASM 2.0;
version 1.0 include "qelib1.inc";
qubits 6 qreg q[6];
x q[5] x q[5];
h q[0,1,2,3,4,5] h q[0];
… h q[1];

h q[2];
…

15

LibKet
• Bidirectional communication between C++ host code

and Python-based QSim/QComputer environment

QData<6, OpenQASMv2> backend;
json result = expr(backend).execute();
cout << result << endl;

[{"data":{"counts":{"0x0":22,"0x1":15,"0x10":18
,"0x11":11,"0x12":15,"0x13":11,"0x14":14,"0x15"
:20,"0x16":12,"0x17":13,"0x18":15,"0x19":16 ...

16

LibKet
• Will allow end-user to develop quantum algorithms

from scratch but also to exploit Q-acceleration using
ready-to-use pre-built quantum expressions
auto expr = qft<…>(range<0,5>(init()));

• Will provide intrinsic types and arithmetic ops:

QInt<6> a(1), b(1); a+=b;
QPosit<8,1> a(1.3), b(2.3); a+=b;

17

LibKet workflow

• C++ host code
→ auto-generate rule-based optimized xQASM kernel
→ apply proprietary toolchain (compile & execute)
→ import results into C++ host code via JSON objects

• Pros:
– Develop Q-accelerated scientific application in C++ only

– Develop backend-independent quantum algorithms (QA) just once

– Exploit all benefits (QPU-optimization) from proprietary toolchains

– Compare different QPUs at the cost of a single code compilation

• Cons: None? Try it yourself and please tell me if any!

18

Past and ongoing activities
• Bachelor projects:

– v.d. Lans: Multi-search Groover, Q-add/sub
– Looman: Q-add with simulated quantum errors
– v.d. Linde: Posit arithmetics

– Driebergen: Posit arithmetics for QC
– Ubbes: Quantum Linear Solver Algorithm (QLSA)
– Schalkers (internship at TNO): LibKet, …

• Collaborations:
– TNO, TU Delft Quantum & Computer Eng., SurfSara

QC1.0

QC2.0

19

A first quantum algorithm: 1+1=2
• Integer addition:

– a = 1; b = 1; c = a+b; ✗ (no-cloning principle)
– a = 1; b = 1; a += b; ✓

• Classical adder circuits:
– Must be reversible (all QAs are reversible!)
– Must be realizable with quantum gates only
– Should need few ancilla qubits (20-40 qubits)

20

A first quantum algorithm: 1+1=2

Cuccaro et al.: A new quantum ripple-carry addition circuit (2008)

Reversible Adder for Two 3-bit Numbers

|0⟩
|a1⟩
|b1⟩
|0⟩
|a2⟩
|b2⟩
|0⟩
|a3⟩
|b3⟩
|0⟩

|0⟩
|a1⟩
|(a+b)1⟩
|0⟩
|a2⟩
|(a+b)2⟩
|0⟩
|a3⟩
|(a+b)3⟩
|(a+b)4⟩

C
A
R
R
Y

C
A
R
R
Y

C
A
R
R
Y

!
❡

S
U
M

C
A
R
R
Y

S
U
M

C
A
R
R
Y

S
U
M

The construction of an n-bit reversible adder is a straightforward extension
of the 3-bit adder. Note that an additional n qubits were needed as temporary
carry bits. These qubits are reversibly set back to zero after they are used so
they may be used for later computation. Therefore, even though the input and
output may be stored using only 2n qubits, 3n qubits must be used for the
computation.

3 The Quantum Fourier Transform

For simplification of notation, let e(t) = e2πit. Let a ∈ Z2n , the additive group
of integers modulo 2n. Let anan−1 · · · a2a1 be the binary representation for a,
where a = an2n−1 + an−12n−2 + · · ·+ a221 + a120. Then |a⟩ = |an⟩ ⊗ |an−1⟩ ⊗
· · ·⊗ |a2⟩ ⊗ |a1⟩. The quantum Fourier transform (QFT) of |a⟩ is the mapping

|a⟩ F2n−→
1

2
n

2

2
n
−1∑

k=0

e(ak/2n)|k⟩. (1)

It turns out that (1) is unentangled[3]. Let

|φk(a)⟩ =
1√
2
(|0⟩ + e(a/2k)|1⟩). (2)

Then (1) factors as

2
n
−1

∑

k=0

e(ak/2n)|k⟩ = |φn(a)⟩ ⊗ · · ·⊗ |φ2(a)⟩ ⊗ |φ1(a)⟩.

It is also helpful to notice that e(a/2k) = e(0.ak . . . a1), where (0.ak . . . a1)
is a binary fraction. Therefore, each |φk(a)⟩ contains the lower k binary digits
of a. Consider the following two gate operations:

4

1 Introduction

Traditionally, addition algorithms designed for a quantum computer have mir-
rored their classical counterparts[2, 6, 9], with the necessary extensions for re-
versible computation. Faster quantum addition algorithms implement carry-
save techniques[5, 10], but still follow a classical model. However, the ideal
addition algorithm for a quantum computer may not be similar to its classical
counterpart. This paper presents a new paradigm for addition on a quantum
computer.

The addition method used takes two values a and b, computes F (a) the
quantum Fourier transform (QFT) of a and then uses b to evolve F (a) into
F (a + b). The inverse quantum Fourier transform may then be applied and the
sum recovered. Since there is a cost of computing the transform before and after
the sum, as much computation as possible should be performed in the transform
range before leaving.

This paper assumes a rudimentary background in the ideas of quantum
computation. For an introduction to quantum computation the reader is en-
couraged to read Art Pittenger’s, ”An Introduction to Quantum Computing
Algorithms”[7] or Andrew Steane’s, ”Quantum Computing”[8]. For further
study, an excellent searchable pre-print server is maintained by Los Alamos
laboratories. Papers on quantum computing/cryptography may be found at
http://xxx.lanl.gov/quant-ph.

2 Classical Addition

A number of papers have been published concerning the implementation of
addition on a quantum computer [2, 5, 7, 9, 10]. All of the implementations use
at least 3n qubits to add two n-bit numbers. The method presented here follows
the outline in [7]. The adder is composed of two basic unitary computational
units.

Carry Gate

C
A
R
R
Y

=

!
! !
! ❡ !
❡ ❡

Sum Gate

S
U
M

=

!
!
❡ ❡

A carry gate with the dark bar on the left side is considered to be a normal
carry gate executed in reverse order. The following diagram shows how these
two unitary gates are combined to form a reversible adder.

3

1 Introduction

Traditionally, addition algorithms designed for a quantum computer have mir-
rored their classical counterparts[2, 6, 9], with the necessary extensions for re-
versible computation. Faster quantum addition algorithms implement carry-
save techniques[5, 10], but still follow a classical model. However, the ideal
addition algorithm for a quantum computer may not be similar to its classical
counterpart. This paper presents a new paradigm for addition on a quantum
computer.

The addition method used takes two values a and b, computes F (a) the
quantum Fourier transform (QFT) of a and then uses b to evolve F (a) into
F (a + b). The inverse quantum Fourier transform may then be applied and the
sum recovered. Since there is a cost of computing the transform before and after
the sum, as much computation as possible should be performed in the transform
range before leaving.

This paper assumes a rudimentary background in the ideas of quantum
computation. For an introduction to quantum computation the reader is en-
couraged to read Art Pittenger’s, ”An Introduction to Quantum Computing
Algorithms”[7] or Andrew Steane’s, ”Quantum Computing”[8]. For further
study, an excellent searchable pre-print server is maintained by Los Alamos
laboratories. Papers on quantum computing/cryptography may be found at
http://xxx.lanl.gov/quant-ph.

2 Classical Addition

A number of papers have been published concerning the implementation of
addition on a quantum computer [2, 5, 7, 9, 10]. All of the implementations use
at least 3n qubits to add two n-bit numbers. The method presented here follows
the outline in [7]. The adder is composed of two basic unitary computational
units.

Carry Gate

C
A
R
R
Y

=

!
! !
! ❡ !
❡ ❡

Sum Gate

S
U
M

=

!
!
❡ ❡

A carry gate with the dark bar on the left side is considered to be a normal
carry gate executed in reverse order. The following diagram shows how these
two unitary gates are combined to form a reversible adder.

3

n extra ancilla qubits needed L

21

Another quantum algorithm: 1+1=2

Draper: Addition on a quantum computer (2000)

as well be interchanged according to the changes in the order of the rotation gates.

[H,Rx] = HRx �RxH
1
p
2

✓
1 e2⇡i/2x

1 �e2⇡i/2x

◆
�

1
p
2

✓
1 1

e2⇡i/2x �e2⇡i/2x

◆
6= 02,2 (4.7)

[Rx, Ry] = RxRy �RyRx

✓
1 0
0 e2⇡i/2(x+y)

◆
�

✓
1 0
0 e2⇡i/2(x+y)

◆
= 02,2 (4.8)

With this in mind, the quantum circuit from figure 4.1 could be tidied up. This results
in the quantum circuit in figure 4.7 that adds two arbitrary n-qubit registers.

Figure 4.7. The tidied up quantum circuit that adds |b1b2 · · · bni to |a1a2 · · · ani.

The short-hand notation for quantum addition is given in figure 4.8.

Figure 4.8. The addition gate that adds b to a.

To illustrate the quantum addition routine outlined in this section, consider a = 6 and
b = 3. Then n = 4 in order to satisfy a, b < 2n�1, so no overflow can occur. a = 6

62

no extra ancilla qubits needed J

22

Another quantum algorithm: 1+1=2

Draper: Addition on a quantum computer (2000)

Conditional Rotation Hadamard Transform

Rk =
♥k
" =

"
♥k

=

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e(1

2k)

⎤

⎥
⎥
⎦

and H = 1
√

2

[

1 1
1 −1

]

The conditional rotation gate performs a phase rotation between two qubits
conditioned on their superposition. For example, if the state between two qubits
was α|00⟩ + β|01⟩ + γ|10⟩ + δ|11⟩, then after performing a conditional k rota-
tion gate their joint state would be α|00⟩ + β|01⟩ + γ|10⟩ + e(1/2k)δ|11⟩. The
Hadamard transform gate operates on a single qubit and transforms the state
α|0⟩ + β|1⟩ to 1

√

2
((α + β)|0⟩ + (α − β)|1⟩). Computing the QFT may be done

according to the following wire diagram.

Quantum Fourier Transform

|an⟩ H ♥2 · · · ♥n-1 ♥n · · · |φn(a)⟩

|an−1⟩ " H · · · ♥n-2 ♥n-1 · · · |φn−1(a)⟩
...

|a2⟩ " " · · · H ♥2 |φ2(a)⟩

|a1⟩ " " · · · " H |φ1(a)⟩

To see the effect of the transform on a qubit, we will follow what each gate
does to the qubit |an⟩.

|an⟩ −→ 1
√

2
(|0⟩ + e(0.an)|1⟩) Hadamard transform

−→ 1
√

2
(|0⟩ + e(0.anan−1)|1⟩) R2 rotation conditioned on an−1

...
...

−→ 1
√

2
(|0⟩ + e(0.anan−1 . . . a1)|1⟩) Rn rotation conditioned on a1

= |φn(a)⟩

4 The Approximate QFT

As k gets large, the conditional rotation associated with k gets very small, and
hence, the rotation matrix approaches the identity. It is natural to ask how
good an approximation may be if we do not perform, or are unable to perform,
gates below a certain tolerance. Barenco, et. al. proved that in the presence of
decoherence, an approximate quantum Fourier transform (AQFT) may in fact
be more accurate than a full QFT[1]. Depending on the decoherence present,

5

as well be interchanged according to the changes in the order of the rotation gates.

[H,Rx] = HRx �RxH
1
p
2

✓
1 e2⇡i/2x

1 �e2⇡i/2x

◆
�

1
p
2

✓
1 1

e2⇡i/2x �e2⇡i/2x

◆
6= 02,2 (4.7)

[Rx, Ry] = RxRy �RyRx

✓
1 0
0 e2⇡i/2(x+y)

◆
�

✓
1 0
0 e2⇡i/2(x+y)

◆
= 02,2 (4.8)

With this in mind, the quantum circuit from figure 4.1 could be tidied up. This results
in the quantum circuit in figure 4.7 that adds two arbitrary n-qubit registers.

Figure 4.7. The tidied up quantum circuit that adds |b1b2 · · · bni to |a1a2 · · · ani.

The short-hand notation for quantum addition is given in figure 4.8.

Figure 4.8. The addition gate that adds b to a.

To illustrate the quantum addition routine outlined in this section, consider a = 6 and
b = 3. Then n = 4 in order to satisfy a, b < 2n�1, so no overflow can occur. a = 6

62

as well be interchanged according to the changes in the order of the rotation gates.

[H,Rx] = HRx �RxH
1
p
2

✓
1 e2⇡i/2x

1 �e2⇡i/2x

◆
�

1
p
2

✓
1 1

e2⇡i/2x �e2⇡i/2x

◆
6= 02,2 (4.7)

[Rx, Ry] = RxRy �RyRx

✓
1 0
0 e2⇡i/2(x+y)

◆
�

✓
1 0
0 e2⇡i/2(x+y)

◆
= 02,2 (4.8)

With this in mind, the quantum circuit from figure 4.1 could be tidied up. This results
in the quantum circuit in figure 4.7 that adds two arbitrary n-qubit registers.

Figure 4.7. The tidied up quantum circuit that adds |b1b2 · · · bni to |a1a2 · · · ani.

The short-hand notation for quantum addition is given in figure 4.8.

Figure 4.8. The addition gate that adds b to a.

To illustrate the quantum addition routine outlined in this section, consider a = 6 and
b = 3. Then n = 4 in order to satisfy a, b < 2n�1, so no overflow can occur. a = 6

62

The critical difference between quantum addition and the QFT is that all
of the operations commute with each other in quantum addition, whereas the
Hadamard transforms necessary to do the QFT require certain ordering. It
follows that if a quantum computer can implement numerous independent gate
operations simultaneously, the run time will decrease proportionally with its
capabilities. Therefore, a quantum computer capable of computing n

2
indepen-

dent 2-qubit gate operations simultaneously, can perform quantum addition in
about n + 1 time slices. If we are using the AQFT technique of eliminating
rotations below a certain threshold, the quantum addition may be performed in
log2n time slices. One possible parallel method would be to execute all depth
1 rotations simultaneously, and then all depth 2 rotations, etc. It is clear that
each of these are operating on independent qubits. In [10], Zalka discusses why
we may expect this type of parallelism in a quantum computer.

Parallel Transform Addition

|bn⟩ ! |bn⟩

|bn-1⟩ ! ! |bn-1⟩
...

|b2⟩ · · · ! · · · · · · |b2⟩

|b1⟩ · · · ! · · · ! · · · |b1⟩

|φn(a)⟩ ♥1 · · · ♥2 · · · · · · |φn(a+b)⟩

|φn-1(a)⟩ ♥1 · · · · · · · · · |φn-1(a+b)⟩
...

...

|φ2(a)⟩ · · · ♥1 · · · ♥2 |φ2(a+b)⟩

|φ1(a)⟩ · · · ♥1 |φ1(a+b)⟩
︸ ︷︷ ︸ ︸ ︷︷ ︸

1st time slice 2nd
︸ ︷︷ ︸

log
2
n time slices

6 Implications

In Zalka’s paper[10], he outlines a number of methods for computing Shor’s
factorization algorithm on a quantum computer. The impact of the quantum
addition algorithm has the greatest impact if we are trying to minimize the
qubits necessary to perform a computation. Zalka shows that with a number of
refinements, Shor’s algorithm may be computed using only 3n qubits. Replacing
the addition used by Zalka with quantum addition allows us to perform Shor’s
algorithm using only 2n qubits. It should be noted that these run times are
both O(n3) in the number of operations. There exist faster algorithms with a
run time of O(n2logn), but these algorithms require substantially more qubits
and the qubit reduction from the quantum addition is not nearly so dramatic.

7

23

Using LibKet: 1+1=2

• LibKet quantum expression:
auto expr =
qftdag(range<n,n>(add(range<0,n>(all()),

qft(range<n,n>())
));

• Or simply (planned for 1st official release):
QInt<6> a(1), b(1); a += b;

24

Towards practical QC: 1+1 ≅ 2

32 6. ANALYSIS

In the tables 3 and 4, the error rate is given in the upper row and the input size N is given in
the left column. In every cell, there are two values: the left value is the probability of the correct
answer; the right value is the biggest probability of every value except the correct value. These
values are imported, because if the first value is smaller than the second one, the algorithm
is unable to preform any calculation corresponding to the given input size N and error rate.
Those cells are marked red and the others are marked green. Notice that the values of some
cells are relatively close to each other. For example look at table 3 with input size N = 8

and error rate 10�
5
2 . The probability that the correct value is measured is: 0.00834128 and

the biggest probability a specific wrong answer is measured is 0.00823629. Someone could say
that with enough measurements you can distinguish the correct from the wrong answer because
0.00834128 > 0.00823629. Notice that we have two problems. Since the values are very close
together you would need a lot of measurements before you could say with a given certainty what
the correct answer is. In theory this is not a limit so it should be possible. The second and more
serious problem is that another 10000 runs may give slightly di↵erent values, because we only
use a finite amount of runs and we are trying to approximate the true value1. It is possible that
for the true values the opposite is true. For this reason, this cell is marked red instead of green.
Notice we have some white spots in the tables. These cells are not interesting since the algorithm
is already not able to give the right answer for a lower input size N . For unity reasons we have
chosen to only leave out the same values in both the tables.

0,1 10�
3
2 0,01 10�

5
2

1 0.27045 0.3793 0.50545 0.2752 0.78965 0.1233 0.92285 0.0463
2 0.134061 0.221523 0.165182 0.209176 0.451353 0.134284 0.762621 0.0570876
3 0.0601436 0.112097 0.0683512 0.116162 0.191802 0.105916 0.540766 0.0754021
4 0.0336509 0.0611537 0.0351125 0.0589036 0.064375 0.0645881 0.306778 0.0802711
5 0.0224336 0.031892 0.154869 0.0575671
6 0.00798384 0.0176539 0.0654961 0.033179
7 0.00398747 0.0076473 0.0252142 0.0167067
8 0.00254026 0.00363275 0.00834128 0.00823629

Table 3. Results: Normal circuit

0,1 10�
3
2 0,01 10�

5
2

1 0.29475 0.3695 0.54555 0.27185 0.8158 0.11735 0.93645 0.04195
2 0.110416 0.230068 0.239152 0.203304 0.569495 0.115691 0.837026 0.0445888
3 0.0581316 0.114572 0.096711 0.122477 0.341537 0.102147 0.697436 0.0509187
4 0.0259028 0.0583002 0.0382769 0.0672328 0.183066 0.0726129 0.543162 0.0579935
5 0.0839273 0.0450361 0.407117 0.0574072
6 0.0412412 0.0270095 0.283642 0.049151
7 0.0177059 0.0131818 0.191996 0.0404665
8 0.00647699 0.00675828 0.116269 0.0290022

Table 4. Results: Parallelization of the circuit

1Note that their is not really a true value since we are using random noise, our true value is an average of all
possible conditions

Looman: Implementation and Analysis of an Algorithm on Positive Integer
Addition for Quantum Computing (2018)

QI
nt
<n
>

1000 QX simulator runs with depolarizing noise error model

Standard circuit: prob. correct (left), largest prob. wrong answer (right)

25

Towards practical QC: 1+1 ≅ 2

Looman: Implementation and Analysis of an Algorithm on Positive Integer

Addition for Quantum Computing (2018)

32 6. ANALYSIS

In the tables 3 and 4, the error rate is given in the upper row and the input size N is given in
the left column. In every cell, there are two values: the left value is the probability of the correct
answer; the right value is the biggest probability of every value except the correct value. These
values are imported, because if the first value is smaller than the second one, the algorithm
is unable to preform any calculation corresponding to the given input size N and error rate.
Those cells are marked red and the others are marked green. Notice that the values of some
cells are relatively close to each other. For example look at table 3 with input size N = 8

and error rate 10�
5
2 . The probability that the correct value is measured is: 0.00834128 and

the biggest probability a specific wrong answer is measured is 0.00823629. Someone could say
that with enough measurements you can distinguish the correct from the wrong answer because
0.00834128 > 0.00823629. Notice that we have two problems. Since the values are very close
together you would need a lot of measurements before you could say with a given certainty what
the correct answer is. In theory this is not a limit so it should be possible. The second and more
serious problem is that another 10000 runs may give slightly di↵erent values, because we only
use a finite amount of runs and we are trying to approximate the true value1. It is possible that
for the true values the opposite is true. For this reason, this cell is marked red instead of green.
Notice we have some white spots in the tables. These cells are not interesting since the algorithm
is already not able to give the right answer for a lower input size N . For unity reasons we have
chosen to only leave out the same values in both the tables.

0,1 10�
3
2 0,01 10�

5
2

1 0.27045 0.3793 0.50545 0.2752 0.78965 0.1233 0.92285 0.0463
2 0.134061 0.221523 0.165182 0.209176 0.451353 0.134284 0.762621 0.0570876
3 0.0601436 0.112097 0.0683512 0.116162 0.191802 0.105916 0.540766 0.0754021
4 0.0336509 0.0611537 0.0351125 0.0589036 0.064375 0.0645881 0.306778 0.0802711
5 0.0224336 0.031892 0.154869 0.0575671
6 0.00798384 0.0176539 0.0654961 0.033179
7 0.00398747 0.0076473 0.0252142 0.0167067
8 0.00254026 0.00363275 0.00834128 0.00823629

Table 3. Results: Normal circuit

0,1 10�
3
2 0,01 10�

5
2

1 0.29475 0.3695 0.54555 0.27185 0.8158 0.11735 0.93645 0.04195
2 0.110416 0.230068 0.239152 0.203304 0.569495 0.115691 0.837026 0.0445888
3 0.0581316 0.114572 0.096711 0.122477 0.341537 0.102147 0.697436 0.0509187
4 0.0259028 0.0583002 0.0382769 0.0672328 0.183066 0.0726129 0.543162 0.0579935
5 0.0839273 0.0450361 0.407117 0.0574072
6 0.0412412 0.0270095 0.283642 0.049151
7 0.0177059 0.0131818 0.191996 0.0404665
8 0.00647699 0.00675828 0.116269 0.0290022

Table 4. Results: Parallelization of the circuit

1Note that their is not really a true value since we are using random noise, our true value is an average of all
possible conditions

QI
nt
<n
>

Optimized circuit: prob. correct (left), largest prob. wrong answer (right)

1000 QX simulator runs with depolarizing noise error model

26

Quantum computing in a nutshell and
why it’s so difficult to make progress

27

QC in a nutshell

• A single qubit state:

|"⟩ = %|0⟩ + (|1⟩,
%, (∈ ℂ, |%|- + |(|- = 1

|"⟩ = cos 12 |0⟩ + 3
45sin 12 |1⟩

28

QC in a nutshell

• Hadamard (H) gate:

! = 1
2
1 1
1 −1

!|'⟩ =) + +
2 |0⟩ +) − +2 |1⟩

Unitary operators, i.e. --. = / or 0, 2 3 = -0, -2 3, ∀0, 2 ∈ !

29

QC in a nutshell

Farouk et al.: Architecture of multicast centralized key management scheme using
Quantum key distribution and classical symmetric encryption (2014)

30

Grover’s search algorithm

2 Grover’s Algorithm

Searching through an unordered list with N entries in a classical way can take up
to N evaluations, because in the worst case all elements of the list must be checked.
The algorithm thus uses O(N) operations. On a quantum computer, this problem can

be solved significantly more e�cient. Grover’s algorithm[18] requires only O
⇣p

N
⌘

operations to search through an unordered list with high probability of success. Although
the speedup is not exponential, it can reduce computation time significantly if N is very
large. Moreover, it was proven by Bennett, Berstein, Brassard and Vazirani that Grover’s
algorithm is the optimal (quantum) algorithm for searching through unordered lists[3].

Grover’s algorithm is not only an e�cient algorithm for searching through unordered
databases, it could also used to break certain cryptography methods. Advanced Encryption

Standard (AES) is a cipher that is used by WinRaR and several other companies. This
encryption method uses keys with a length of 128, 192 and 256 bits. With Grover’s
algorithm, a 256 bit key can be found in ’only’ 2128 iterations. That is still an enormous
number, however it is almost 1040 times faster compared to brute forcing! If large
quantum computers become available, AES users would most likely be forced to use keys
with significantly more than 256 bits[5].

In section 2.1, the steps of Grover’s algorithm are described. Then, the circuit implemen-
tation for two qubits and for an arbitrary number of qubits is outlined in section 2.2. In
section 2.3, the optimal number of iterations for Grover’s algorithm and its consequences
for the time complexity are analysed. Thereafter, in section 2.4, Grover’s algorithm is
extended to a multi-search algorithm and analysis on the optimal number of iterations is
performed. Finally, in section 2.5 an application of this multi-search algorithm to the
SAT-problem is described.

2.1 Steps in Grover’s Algorithm

Figure 2.1. A schematic overview of the circuit for Grover’s Algorithm.

15v.d. Lans: QAs and their implementation on QC simulators (2017)

31

Grover’s search algorithm

Wright, Tseng: Grover’s algorithm (2015)

In figure 2.1, a schematic overview of the circuit for Grover’s algorithm is given. Grover’s
algorithm relies on an oracle. An oracle can be viewed as a black box that performs an
operation on a quantum state that is not readily specified by universal quantum gates.
In Grover’s algorithm, an oracle is implemented such that it flips the sign of |xi i↵ x is a
state we are looking for (the ’correct’ quantum state). This can be expressed as

|xi
O
7�! (�1)f(x) |xi (2.1)

with f(x) = 1 if x is the correct state and f(x) = 0 otherwise. For now, this oracle is
treated as a black box. The implementation of the oracle is described in section 2.2.

Grover’s algorithm for searching through n-qubit states starts with a register of n+ 1
qubits initialized to | i = |0i⌦n

⌦ |1i. The n+ 1th qubit a so-called ancillary qubit, that
is used in performing the oracle. The ancillary qubit is not of interested for now and will
be ignored for now. The number of possible quantum states is thus N = 2n. Then, the
Hadamard gate is applied to all qubits, resulting in an equal superposition of all possible
states,

| i = H⌦n
|0i⌦n =

1
p
N

X

x2{0,1}n

|xi (2.2)

Since the coe�cients of the states are real throughout the whole algorithm, the state can
also be visualized in a diagram representing the amplitudes of the states. Recall that the
modulus squared of the amplitude is the measurement probability of that quantum state.
After applying the Hadamard gate, the quantum state is visually given in figure 2.2.

Figure 2.2. The amplitudes of the quantum states after applying the set of Hadamards. Reprinted
from Grover’s Algorithm (Wright & Tseng, 2015)

Now, the so-called Grover iteration is applied to the quantum state. Grover iteration
starts with applying the oracle described in equation (2.1). This results in the correct
state having its sign flipped while all other states are untouched. Let x* denote the
correct state. The resulting state is

| i = �
1

p
N

|x*i+
1

p
N

X

x2{0,1}n

x 6=x*

|xi (2.3)

16

32

Grover’s search algorithm

Wright, Tseng: Grover’s algorithm (2015)

This is represented graphically in figure 2.3.

Figure 2.3. The amplitudes of the quantum states after applying the oracle. Reprinted from
Grover’s Algorithm (Wright & Tseng, 2015)

In order to find the correct state in a measurement with some probability of success, the
probability amplitude of the correct state must be increased. This is done by applying the
Grover di↵usion operator. For now, this is defined as a black box. The implementation
in a quantum circuit is given in section 2.2. Define µ as the average of the coe�cients ↵x

in front of |xi (this is a real number, since all coe�cients are real),

µ =
1

N

X

x2{0,1}n

↵x =
(N � 1)↵x � ↵x*

N
(2.4)

The Grover di↵usion operator then flips the coe�cients around the average of the
coe�cients by the mapping

↵x |xi 7! (2µ� ↵x) |xi (2.5)

If N is large (this is not a requirement, but merely an assumption for the sake of
illustration), µ is very close to ↵x. Therefore, using ↵x* = �↵x we find that the mapping
takes the correct state ↵x* |x*i to (2↵x � ↵x*) |x*i = 3↵x |x*i and takes the other states
to (2↵x � ↵x) |xi = ↵x |xi. The amplitude of the correct state is thus amplified to 3

p
N
.

Graphically, the quantum state is given in figure 2.4.

17

33

Grover’s search algorithm

Wright, Tseng: Grover’s algorithm (2015)

Figure 2.4. The amplitudes of the quantum states after applying the Grover di↵usion gate.
Reprinted from Grover’s Algorithm (Wright & Tseng, 2015)

Since the mean amplitude was approximately equal to 1
p
N
, the amplitude of all states but

x* stays roughly the same. The amplitude of x* however is amplified to about 3
p
N
[34].

This iteration can be applied multiple times to further increase the amplitude of x*.
After applying the oracle once more, we have the quantum state in figure 2.5.

Figure 2.5. The amplitudes of the quantum states after applying the oracle once more. Reprinted
from Grover’s Algorithm (Wright & Tseng, 2015)

And after applying Grover’s di↵usion gate one more time the amplitude of the correct
state increases to approximately 5

p
N
, see figure 2.6.

18

34

Grover’s search algorithm

Wright, Tseng: Grover’s algorithm (2015)

Figure 2.4. The amplitudes of the quantum states after applying the Grover di↵usion gate.
Reprinted from Grover’s Algorithm (Wright & Tseng, 2015)

Since the mean amplitude was approximately equal to 1
p
N
, the amplitude of all states but

x* stays roughly the same. The amplitude of x* however is amplified to about 3
p
N
[34].

This iteration can be applied multiple times to further increase the amplitude of x*.
After applying the oracle once more, we have the quantum state in figure 2.5.

Figure 2.5. The amplitudes of the quantum states after applying the oracle once more. Reprinted
from Grover’s Algorithm (Wright & Tseng, 2015)

And after applying Grover’s di↵usion gate one more time the amplitude of the correct
state increases to approximately 5

p
N
, see figure 2.6.

18

35

Grover’s search algorithm

Wright, Tseng: Grover’s algorithm (2015)

Figure 2.6. The amplitudes of the quantum states after applying the Grover di↵usion gate once
more. Reprinted from Grover’s Algorithm (Wright & Tseng, 2015)

The amount by which the amplitude increases in each iteration is determined by the
di↵erence between the (negative) amplitude of x* and the mean of all amplitudes. As the
amplitude of x* grows, the amplitudes of the other states decrease. The mean therefore
also decreases resulting in diminishing growth of the amplitude of x*. The amplitude
can at some point even decrease because the mean of the amplitudes after the sign
flip becomes negative. This occurs when the (negative) amplitude of x* is much larger
than the amplitudes of the other states. In the illustration given above, however, the
amplitude will only keep increasing if we assume N ! 1[32]. This is in line with the
general formula for the optimal number of iterations. In section2.3, it will be shown that

the optimal number of iterations is given by R⇤ =
j
⇡
4

p
N
k
.

2.1.1 The Oracle Function

At first sight, you may think that Grover’s algorithm does not seem too useful. You can
find a certain quantum state, but only after you know some oracle function. But if you
have the oracle function, is it not already clear what the outcome of the algorithm will
be? In the case of searching through a database, you are absolutely right. However, there
are some cases in which it is not readily clear from the oracle function what the outcome
will be.

Consider for example the SHA256 algorithm[28], which is used for example as the proof
of work algorithm in several cryptocurrencies. SHA256 is a one-way function that hashes
the input that is given. As a result, the output looks completely random. The objective
in proof of work is to find some input that results in a given output. Since it is a one-way
function, the desired input cannot directly be deduced from the output. Using Grover’s
algorithm, the outcome of all possible input states can be checked simultaneously. The

19

36

Long-term vision

Microprocessors and Microsystems 66 (2019) 67–71
Contents lists available at ScienceDirect

Microprocessors and Microsystems
journal homepage: www.elsevier.com/locate/micpro

A conceptual framework for quantum accelerated automated design
optimization
Matthias Möller a , ∗, Cornelis Vuik a
Delft University of Technology, Delft Institute of Applied Mathematics (DIAM), Van Mourik Broekmanweg 6, XE Delft 2628, The Netherlands
a r t i c l e i n f o
Article history:
Received 20 June 2018
Revised 6 January 2019
Accepted 12 February 2019
Available online 13 February 2019
Keywords:
Automated design optimization
High-performance computing
Quantum algorithms
Quantum-accelerated computing
Scientific computing

a b s t r a c t
The development of practical quantum computers that can be used to solve real-world problems is in full
swing driven by the ambitious expectation that quantum supremacy will be able to outperform classical
super-computers. Like with any emerging compute technology, it needs early adopters in the scientific
computing community to identify problems of practical interest that are suitable as proof-of-concept ap-
plications and to revise existing solution strategies and develop new ones that exploit the capabilities of
the novel compute hardware.

In this article we describe a conceptual framework for reducing the computational complexity
of simulation-driven automated design optimization processes, which are nowadays widely used in
computer-aided product development, by exploiting quantum supremacy. Our approach is based on the
assumption that quantum computers will become part of hybrid high-performance computing platforms
and can then be used as application-specific accelerator devices.

© 2019 Elsevier B.V. All rights reserved.
1. Introduction

The era of accelerated computing started in the mid-20 0 0s,
when CPU clock speeds approached the 4 GHz barrier and a fur-
ther increase beyond this barrier would have required enormous
effort s f or cooling the processor to prevent spurious malfunc-
tioning and even permanent hardware damage from overheating.
All major chip vendors followed the paradigm shift from chasing
ultimate single-core performance towards developing parallel
high-performance computing (HPC) technologies and flooded the
market with multi-core CPUs and many-core accelerator cards like
programmable GPUs and dedicated co-processor devices.
1.1. Accelerated computing

The key idea of accelerated computing is to offload computa-
tionally expensive tasks from the host, a classical multi-core and
possibly multi-socket CPU-based computer, to the attached accel-
erator devices, which altogether form the so-called compute node.
Modern HPC systems consist of hundreds and thousands of com-
pute nodes, which are interconnected by high-speed networks.

∗ Corresponding author.
E-mail address: m.moller@tudelft.nl (M. Möller).
URL: http://www.ta.twi.tudelft.nl/nw/users/matthias/ (M. Möller)

In classical accelerated computing, the role of the host com-
puter is threefold: Firstly, tasks that do not benefit from the
compute capabilities of the accelerator devices such as in- and out-
put of data from and to the global filesystem and intrinsically se-
quential (parts of) algorithms are executed by the host. Secondly,
the host is responsible for orchestrating the interplay of acceler-
ator devices among each other and with the CPU and for man-
aging the communication between the distributed compute nodes.
Finally, since modern CPUs have up to 20–32 cores with integrated
vector-processing units, heterogeneous HPC systems also use the
massive compute power of the host to perform actual computa-
tions.

Most of today’s many-core accelerators are designed for exe-
cuting parallelizable and/or vectorizable instructions of SIMD-type
(single instruction multiple data) exceptionally fast. Consider, for
instance, the multiplication of an m × n matrix with a column vec-
tor of length n . Each matrix row gives rise to a separate dot prod-
uct, i.e. an accumulated multiply-add operation that can be carried
out in a parallel and, ideally, vectorized loop over all rows even
on multiple devices with distributed memory architecture. This so-
called divide-and-conquer approach is a common building block in
classical HPC applications and it is supported by most program-
ming models like OpenMP [1] and MPI [2] .

Recently, application-specific accelerator technologies are
emerging, which offer extra functionality that is not available
in commodity hardware. Consider, for instance, Google’s tensor
processing units [3] , which is an application-specific integrated

https://doi.org/10.1016/j.micpro.2019.02.009
0141-9331/© 2019 Elsevier B.V. All rights reserved.

37

Design optimization

• Abstract problem:
min$∈& ' ($; * s. t. ℛ ($; * = 0

– Admissible design parameters $ ∈ &
– Generated design (control) ($
– Solution * = *((($)) to PDE in residual form
– Cost functional ' ⋅ to be minimized

38

Academic model problem
• 2D Poisson equation:

−Δ# = % in Ω)
= 0 on Γ)

• Design parameter:
- . =) . − ./ ,)123 ≤) ≤)156

• Optimization problem:
– Minimize L2-error between solution # and a given

reference profile #∗ by adjusting the shape of the
domain boundary at the bottom

39

Q-accelerated linear solvers
• Discretized problem:

min$∈& '
($

)*+,-
.
+
≈ min$∈&)*01)*

.
+

such that

2*)* = 4* − 2*6*∗)* = 6* − 6*∗

s-sparse SPD well-conditioned matrix

sparse matrix

QLSA

40

Q-accelerated optimization
• Taylor expansion about the optimal state !∗:

!(%) − # !∗ =

)
*+,

-./0
12#

23* !∗
3*% −3*∗

+12)
*,8+,

-./0
3*% − 3*∗ 92:#

23*238 !∗
3*% −3*∗

+; ! % − !∗ <

41

Q-accelerated optimization
• Positive-definite quadratic form:

! " # = 1
2 '
(,*+,

-./ 0
1(# − 1(∗ 4567

51(51* "∗
1(# −1(∗

QOpt

42

Potential Q-speedup
• QLSA:

– CG method: ! "#$ log 1/*
– HHL (2009): ! log " #+$+/*
– Ambainis (2012): ! log " #+$/*
– Childs et al. (2017): ! polylog #$/* #$

• QOpt:
– Yao (1975): ! dim1+

– Jordan (2008): ! dim1

• Other:
– Cao et al. (2013): FDM Q-Poisson solver
– Montanaro et al. (2016): FEM Q-Poisson solver

43

Aircraft Climb Optimization

CFD on Quantum Computers

Surrogate modelling of PDEs

Wingbox Design Optimization

Aircraft Loading Optimization

44

Wrap-up
• LibKet:

– Early adopter usage and feedback highly appreciated

• Q-accelerated shape optimization:
– Feedback on concept and collaboration welcome

• Possible collaboration with NLR:
– Airbus Quantum Challenge and other topics
– Q-Flagship project (coordinated by K. Bertels)

Thank you for your attention!

