
IgaNets: Physics-Informed Machine Learning
Embedded Into Isogeometric Analysis

Matthias Möller, Deepesh Toshniwal, Frank van Ruiten

Numerical Analysis, Delft Institute of Applied Mathematics
EEMCS, Delft University of Technology

NMC Scientific Days
19 & 20 April 2022

1 / 18

Numerics for PDE analysis

Many physical processes are modelled mathematically by (systems of) PDEs that require
fast & accurate numerical methods to compute approximate solutions:

• particle methods: PIC (1955), SPH (1977), DPD (1992), RKPM (1995), ...
• hybrid particle-mesh methods: MPM (1990s), ...
• mesh-based methods: FEM (1940s), FDM (1950s), FVM (1971), IGA (2005), ...

How fast is fast? And is it just about analysis?

Credit: www.superzelle.de – Janek Zimmer; University of Texas at Dallas (DOI: 10.1063/5.0036640); University of Minnesota – Eolos Wind Energy Research

2 / 18

www.superzelle.de

Numerics for PDE analysis

Many physical processes are modelled mathematically by (systems of) PDEs that require
fast & accurate numerical methods to compute approximate solutions:

• particle methods: PIC (1955), SPH (1977), DPD (1992), RKPM (1995), ...
• hybrid particle-mesh methods: MPM (1990s), ...
• mesh-based methods: FEM (1940s), FDM (1950s), FVM (1971), IGA (2005), ...

How fast is fast? And is it just about analysis?

Credit: www.superzelle.de – Janek Zimmer; University of Texas at Dallas (DOI: 10.1063/5.0036640); University of Minnesota – Eolos Wind Energy Research

2 / 18

www.superzelle.de

Design through Analysis

We want it all: from really fast & moderately accurate to moderately fast & highly accurate!

Credit: Siemens – Simulation for Design Engineers

3 / 18

SciML for PDE analysis
• Physics-informed neural networks (PINNs) [Raissi, Perdikaris, Karniadakis, 2019]

• Fourier neural operators (FNO) [Li, Kovachki, Azizzadenesheli, Liu, Bhattacharya,
Stuart, Anandkumar, 2020]

• Learning nonlinear operators (DeepONets) [Lu, Jin, Pang, Zhang, Karniadakis, 2021]

4 / 18

SciML for PDE analysis
• Physics-informed neural networks (PINNs) [Raissi, Perdikaris, Karniadakis, 2019]

+ No pre-calculated data needed (unsupervised learning)
+ Can be augmented with data (faster decay of loss function)
+ Applicable to arbitrary PDEs (extra effort might be needed to impose ‘physics’)

– Convergence theory is in its infancy (different from classical numerical methods theory)
– Poor extrapolation capabilities (different geometries, problem parameters)
– Space-time treatment of time-dependent problems

• Fourier neural operators (FNO) [Li, Kovachki, Azizzadenesheli, Liu, Bhattacharya,
Stuart, Anandkumar, 2020]

• Learning nonlinear operators (DeepONets) [Lu, Jin, Pang, Zhang, Karniadakis, 2021]

4 / 18

SciML for PDE analysis
• Physics-informed neural networks (PINNs) [Raissi, Perdikaris, Karniadakis, 2019]
• Fourier neural operators (FNO) [Li, Kovachki, Azizzadenesheli, Liu, Bhattacharya,

Stuart, Anandkumar, 2020]

• Learning nonlinear operators (DeepONets) [Lu, Jin, Pang, Zhang, Karniadakis, 2021]

4 / 18

SciML for PDE analysis
• Physics-informed neural networks (PINNs) [Raissi, Perdikaris, Karniadakis, 2019]
• Fourier neural operators (FNO) [Li, Kovachki, Azizzadenesheli, Liu, Bhattacharya,

Stuart, Anandkumar, 2020]

+ Aims to learn the operator (not the PDE problem)

– Pre-calculated training data is needed (supervised learning)
– Assumes an efficient Fourier approximation of the solution
– Designed for time-dependent PDEs

• Learning nonlinear operators (DeepONets) [Lu, Jin, Pang, Zhang, Karniadakis, 2021]

4 / 18

SciML for PDE analysis
• Physics-informed neural networks (PINNs) [Raissi, Perdikaris, Karniadakis, 2019]
• Fourier neural operators (FNO) [Li, Kovachki, Azizzadenesheli, Liu, Bhattacharya,

Stuart, Anandkumar, 2020]
• Learning nonlinear operators (DeepONets) [Lu, Jin, Pang, Zhang, Karniadakis, 2021]

Gθ(u)(y) =
q∑

k=1
bk(u(x1), u(x2), . . . , u(xm))︸ ︷︷ ︸

branch

tk(y)︸ ︷︷ ︸
trunk

+ Aims to learn the operator (not the PDE problem)
+ Claims to have excellent extrapolation capabilities

– Pre-calculated training data is needed (supervised learning)
– Designed for time-dependent PDEs

4 / 18

SciML for PDE analysis
• Physics-informed neural networks (PINNs) [Raissi, Perdikaris, Karniadakis, 2019]
• Fourier neural operators (FNO) [Li, Kovachki, Azizzadenesheli, Liu, Bhattacharya,

Stuart, Anandkumar, 2020]
• Learning nonlinear operators (DeepONets) [Lu, Jin, Pang, Zhang, Karniadakis, 2021]

Gθ(u)(y) =
q∑

k=1
bk(u(x1), u(x2), . . . , u(xm))︸ ︷︷ ︸

branch

tk(y)︸ ︷︷ ︸
trunk

+ Aims to learn the operator (not the PDE problem)
+ Claims to have excellent extrapolation capabilities

– Pre-calculated training data is needed (supervised learning)
– Designed for time-dependent PDEs

Combine mesh-based numerics with SciML for PDE analysis

4 / 18

Isogeometric Analysis

B-spline basis functions

knot vector Ξ = [0, 1, 2, 3, 4]

b0
ℓ (ξ) =

{
1 if ξℓ ≤ ξ < ξℓ+1
0 otherwise

bp
ℓ (ξ) = ξ − ξℓ

ξℓ+p − ξℓ
bp−1

ℓ (ξ)

+ ξℓ+p+1 − ξ

ξℓ+p+1 − ξℓ+1
bp−1

ℓ+1 (ξ)

Many good properties: compact support [ξℓ, ξℓ+p+1), positive function values over
support interval, derivatives of B-splines are combinations of lower-order B-splines, ...

T.J.R. Hughes, J.A.Cottrell, Y.Bazilevs: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. CMAME 194, 2005.

5 / 18

Isogeometric Analysis

B-spline basis functions

knot vector Ξ = [0, 1, 2, 3, 4]

b0
ℓ (ξ) =

{
1 if ξℓ ≤ ξ < ξℓ+1
0 otherwise

bp
ℓ (ξ) = ξ − ξℓ

ξℓ+p − ξℓ
bp−1

ℓ (ξ)

+ ξℓ+p+1 − ξ

ξℓ+p+1 − ξℓ+1
bp−1

ℓ+1 (ξ)

Many good properties: compact support [ξℓ, ξℓ+p+1), positive function values over
support interval, derivatives of B-splines are combinations of lower-order B-splines, ...

T.J.R. Hughes, J.A.Cottrell, Y.Bazilevs: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. CMAME 194, 2005.

5 / 18

Isogeometric Analysis
Paradigm: represent ‘everything’ in terms of tensor products of B-spline basis functions

Bi(ξ, η) := bp
ℓ (ξ) · bq

k(η), i := (k − 1) · nℓ + ℓ, 1 ≤ ℓ ≤ nℓ, 1 ≤ k ≤ nk,

2.2. A short introduction on NURBS functions

A knot vector N ¼ n1; n2; . . . ; nnþpþ1
! "

is defined as a sequence of
knot value ni 2; i ¼ 1; . . . ;nþ p. An open knot, i.e, the first and the
last knots are repeated p + 1 times, is used. A B-spline basis
function forms C1 continuous inside a knot span and Cp#1 contin-
uous at a single knot. The B-spline basis functions are constructed
by the following recursion formula

Ni;pðnÞ ¼
n# ni

niþp # ni
Ni;p#1ðnÞ þ

niþpþ1 # n
niþpþ1 # niþ1

Niþ1;p#1ðnÞ

with p > 0 ð14Þ

with p = 0,

Ni;0ðnÞ ¼
1 if ni 6 n < niþ1

0 otherwise

#
ð15Þ

Two-dimensional B-spline basis functions are defined by the
tensor product of basis functions in two parametric dimensions n
and g with two knot vectors N ¼ n1; n2 . . . ; nnþpþ1

$ %
and

H ¼ g1;g2 . . . ;gmþqþ1

n o
as

NAðn;gÞ ¼ Ni;pðnÞMj;qðgÞ ð16Þ

Fig. 1 illustrates the set of one-dimensional and two-dimen-
sional B-spline basis functions.

To model exactly curved geometries (e.g. circles, cylinders,
spheres, etc.), each control point A has additional value called an
individual weight fA. We denote Non-uniform Rational B-splines
(NURBS) functions which are expressed as

RA n;gð Þ ¼ NAfAPm&n
A NA n;gð ÞfA

ð17Þ

It is evident that the B-spline function is obtained when the
individual weight of the control points is constant.

2.3. Extended isogeometric finite elements

The idea of XFEM is to introduce physical functions with a priori
knowledge of the problem field to the approximation [14]. The
basic difference between XFEM and FEM is that the former involves
the solution of the additional parameters blended to the approxi-
mation by the partition of unity. Similar to the enrichment
functions used in XFEM, the XIGA velocity field of the cracked
solids can be expressed as

_uhðxÞ ¼
X

I2S
NI xð Þ _qI þ

X

J2Sc

NJ xð Þ H xð Þ # H xJ
& '& '

_aJ

þ
X

K2St

NK xð Þ
X4

a¼1

Fa xð Þ # Fa xKð Þð Þ _ba
K ð18Þ

Fig. 1. 1D and 2D B-spline basis functions.

Fig. 2. Illustration of enriched control points for a quadratic NURBS net.

H. Nguyen-Xuan et al. / Theoretical and Applied Fracture Mechanics 72 (2014) 13–27 15

bp
ℓ (ξ) bq

k(η)

Bi(ξ, η)

Many more good properties: partition of unity
n∑

i=1
Bi(ξ, η) ≡ 1, Cp−1 continuity, ...

6 / 18

Isogeometric Analysis
Paradigm: represent ‘everything’ in terms of tensor products of B-spline basis functions

Bi(ξ, η) := bp
ℓ (ξ) · bq

k(η), i := (k − 1) · nℓ + ℓ, 1 ≤ ℓ ≤ nℓ, 1 ≤ k ≤ nk,

2.2. A short introduction on NURBS functions

A knot vector N ¼ n1; n2; . . . ; nnþpþ1
! "

is defined as a sequence of
knot value ni 2; i ¼ 1; . . . ;nþ p. An open knot, i.e, the first and the
last knots are repeated p + 1 times, is used. A B-spline basis
function forms C1 continuous inside a knot span and Cp#1 contin-
uous at a single knot. The B-spline basis functions are constructed
by the following recursion formula

Ni;pðnÞ ¼
n# ni

niþp # ni
Ni;p#1ðnÞ þ

niþpþ1 # n
niþpþ1 # niþ1

Niþ1;p#1ðnÞ

with p > 0 ð14Þ

with p = 0,

Ni;0ðnÞ ¼
1 if ni 6 n < niþ1

0 otherwise

#
ð15Þ

Two-dimensional B-spline basis functions are defined by the
tensor product of basis functions in two parametric dimensions n
and g with two knot vectors N ¼ n1; n2 . . . ; nnþpþ1

$ %
and

H ¼ g1;g2 . . . ;gmþqþ1

n o
as

NAðn;gÞ ¼ Ni;pðnÞMj;qðgÞ ð16Þ

Fig. 1 illustrates the set of one-dimensional and two-dimen-
sional B-spline basis functions.

To model exactly curved geometries (e.g. circles, cylinders,
spheres, etc.), each control point A has additional value called an
individual weight fA. We denote Non-uniform Rational B-splines
(NURBS) functions which are expressed as

RA n;gð Þ ¼ NAfAPm&n
A NA n;gð ÞfA

ð17Þ

It is evident that the B-spline function is obtained when the
individual weight of the control points is constant.

2.3. Extended isogeometric finite elements

The idea of XFEM is to introduce physical functions with a priori
knowledge of the problem field to the approximation [14]. The
basic difference between XFEM and FEM is that the former involves
the solution of the additional parameters blended to the approxi-
mation by the partition of unity. Similar to the enrichment
functions used in XFEM, the XIGA velocity field of the cracked
solids can be expressed as

_uhðxÞ ¼
X

I2S
NI xð Þ _qI þ

X

J2Sc

NJ xð Þ H xð Þ # H xJ
& '& '

_aJ

þ
X

K2St

NK xð Þ
X4

a¼1

Fa xð Þ # Fa xKð Þð Þ _ba
K ð18Þ

Fig. 1. 1D and 2D B-spline basis functions.

Fig. 2. Illustration of enriched control points for a quadratic NURBS net.

H. Nguyen-Xuan et al. / Theoretical and Applied Fracture Mechanics 72 (2014) 13–27 15

bp
ℓ (ξ) bq

k(η)

Bi(ξ, η)

Many more good properties: partition of unity
n∑

i=1
Bi(ξ, η) ≡ 1, Cp−1 continuity, ...

6 / 18

Isogeometric Analysis
Geometry: bijective mapping from the unit square to the physical domain Ωh ⊂ Rd

xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · xi ∀(ξ, η) ∈ [0, 1]2 =: Ω̂

• the shape of Ωh is fully specified by the
set of control points xi ∈ Rd

• interior control points must be chosen
such that ‘grid lines’ do not fold as this
violates the bijectivity of xh : Ω̂ → Ωh

• refinement in h (knot insertion) and p
(order elevation) preserves the shape of
Ωh and can be used to generate finer
computational ‘grids’ for the analysis

7 / 18

Isogeometric Analysis
Geometry: bijective mapping from the unit square to the physical domain Ωh ⊂ Rd

xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · xi ∀(ξ, η) ∈ [0, 1]2 =: Ω̂

• the shape of Ωh is fully specified by the
set of control points xi ∈ Rd

• interior control points must be chosen
such that ‘grid lines’ do not fold as this
violates the bijectivity of xh : Ω̂ → Ωh

• refinement in h (knot insertion) and p
(order elevation) preserves the shape of
Ωh and can be used to generate finer
computational ‘grids’ for the analysis

7 / 18

Isogeometric Analysis
Geometry: bijective mapping from the unit square to the physical domain Ωh ⊂ Rd

xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · xi ∀(ξ, η) ∈ [0, 1]2 =: Ω̂

• the shape of Ωh is fully specified by the
set of control points xi ∈ Rd

• interior control points must be chosen
such that ‘grid lines’ do not fold as this
violates the bijectivity of xh : Ω̂ → Ωh

• refinement in h (knot insertion) and p
(order elevation) preserves the shape of
Ωh and can be used to generate finer
computational ‘grids’ for the analysis

7 / 18

Isogeometric Analysis
Data, boundary conditions, and solution: forward mappings from the unit square

(r.h.s vector) fh ◦ xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · fi ∀(ξ, η) ∈ [0, 1]2

(boundary conditions) gh ◦ xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · gi ∀(ξ, η) ∈ ∂[0, 1]2

(solution) uh ◦ xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · ui ∀(ξ, η) ∈ [0, 1]2

Model problem: Poisson’s equation

−∆uh = fh in Ωh, uh = gh on ∂Ωh

8 / 18

Isogeometric Analysis
Data, boundary conditions, and solution: forward mappings from the unit square

(r.h.s vector) fh ◦ xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · fi ∀(ξ, η) ∈ [0, 1]2

(boundary conditions) gh ◦ xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · gi ∀(ξ, η) ∈ ∂[0, 1]2

(solution) uh ◦ xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · ui ∀(ξ, η) ∈ [0, 1]2

Model problem: Poisson’s equation

−∆uh = fh in Ωh, uh = gh on ∂Ωh

8 / 18

Isogeometric Analysis
Different solution approaches

• Galerkin-type IGA (Hughes et al. 2005 and many more)
• Isogeometric collocation methods (Reali, Hughes, 2015)
• Variational collocation method (Gomez, De Lorenzis, 2016)

Abstract representation
Given xi (geometry), fi (r.h.s. vector), and gi (boundary conditions), computeu1

...
un

 = A−1


x1

...
xn

 ,

g1
...

gn


 · b


x1

...
xn

 ,

f1
...

fn

 ,

g1
...

gn




Any point of the solution can afterwards be obtained by a simple function evaluation

(ξ, η) ∈ [0, 1]2 7→ uh ◦ xh(ξ, η) = [B1(ξ, η), . . . , Bn(ξ, η)] ·

u1
...

un



9 / 18

Isogeometric Analysis
Different solution approaches

• Galerkin-type IGA (Hughes et al. 2005 and many more)
• Isogeometric collocation methods (Reali, Hughes, 2015)
• Variational collocation method (Gomez, De Lorenzis, 2016)

Abstract representation
Given xi (geometry), fi (r.h.s. vector), and gi (boundary conditions), computeu1

...
un

 = A−1


x1

...
xn

 ,

g1
...

gn


 · b


x1

...
xn

 ,

f1
...

fn

 ,

g1
...

gn




Any point of the solution can afterwards be obtained by a simple function evaluation

(ξ, η) ∈ [0, 1]2 7→ uh ◦ xh(ξ, η) = [B1(ξ, η), . . . , Bn(ξ, η)] ·

u1
...

un


9 / 18

Isogeometric Analysis
Abstract representation
Given xi (geometry), fi (r.h.s. vector), and gi (boundary conditions), computeu1

...
un

 = A−1


x1

...
xn

 ,

g1
...

gn


 · b


x1

...
xn

 ,

f1
...

fn

 ,

g1
...

gn




Any point of the solution can afterwards be obtained by a simple function evaluation

(ξ, η) ∈ [0, 1]2 7→ uh ◦ xh(ξ, η) = [B1(ξ, η), . . . , Bn(ξ, η)] ·

u1
...

un


Let us interpret the sets of B-spline coefficients {xi}, {fi}, and {gi} as an efficient
encoding of our PDE problem that is fed into our IGA machinery as input.
The output of our IGA machinery are the B-spline coefficients {ui} of the solution.

10 / 18

Isogeometric Analysis + PINNs
IgaNet: replace computation by physics-informed machine learningu1

...
un

 = A−1


x1

...
xn

 ,

g1
...

gn


 · b


x1

...
xn

 ,

f1
...

fn

 ,

g1
...

gn




u1
...

un

 = PINN


x1

...
xn

 ,

f1
...

fn

 ,

g1
...

gn

 ; (ξk, ηk)Nsamples
k=1


Compute the solution by evaluating the trained neural network

uh(ξ, η) ≈ [B1(ξ, η), . . . , Bn(ξ, η)] ·

u1
...

un

 = PINN


x1

...
xn

 ,

f1
...

fn

 ,

g1
...

gn

 ; (ξ, η)



11 / 18

IgaNet architecture

x1

xn

f1

fn

g1

gn

ξ, η

σ

σ

σ

σ

σ

σ

σ

σ

σ

u1

un

loss = lossPDE + lossBDR

loss < ε end training

∂loss
∂(w, b) → update w, b

and continue training

ge
om

et
ry

r.h
.s.

ve
ct

or
bd

r.
co

nd
.

co
or

ds

12 / 18

Loss function

lossPDE = α

NΩ

NΩ∑
k=1

|∆[uh ◦ xh(ξk, ηk)] − fh ◦ xh(ξk, ηk)|2

lossBDR = β

NΓ

NΓ∑
k=1

|uh ◦ xh(ξk, ηk) − gh ◦ xh(ξk, ηk)|2

Express derivatives with respect to physical space variables using the Jacobian J , the
Hessian H and the matrix of squared first derivatives Q [Schillinger et al. 2013]:

∂2B
∂x2

∂2B
∂x∂y

∂2B
∂y2

 = Q−⊤




∂2B
∂ξ2

∂2B
∂ξ∂η

∂2B
∂η2

 − H⊤J−⊤

∂B
∂ξ

∂B
∂η




13 / 18

Two-level training strategy
For [x1, . . . , xn] ∈ Sgeo, [f1, . . . , fn] ∈ Srhs, [g1, . . . , gn] ∈ Sbcond do

For a batch of randomly sampled (ξk, ηk) ∈ [0, 1]2 do

Train PINN


x1

...
xn

 ,

f1
...

fn

 ,

g1
...

gn

 ; (ξk, ηk)Nsamples
k=1

 7→

u1
...

un


EndFor

EndFor

IGA details: 7 × 7 bi-cubic tensor-product B-splines for xh and uh, C2-continuous

PINN details: TensorFlow 2.6, 7-layer neural network with 50 neurons per layer and ReLU
activation function (except for output layer), Adam optimizer, 30.000 epochs, training is
stopped after 3.000 epochs w/o improvement of the loss value

Ongoing master thesis work of Frank van Ruiten, TU Delft

14 / 18

Test case: Poisson’s equation on a variable annulus

g ≡ 0
g

≡
0,

1,
. .

. ,
11

0rad

1rad2rad

3rad

4rad

f ≡ 0, 1, . . . , 11

Ongoing master thesis work of Frank van Ruiten, TU Delft

15 / 18

Preliminary results

x0.0 0.2 0.4 0.6 0.8 1.0

y

0.0

0.2

0.4

0.6

0.8

1.0

z

0.00

0.05

0.10

0.15

0.20

0.25

0.30

g ≡ 0

g
≡

0

0rad

1rad2rad

3rad

4rad

f ≡ 5

Ongoing master thesis work of Frank van Ruiten, TU Delft

16 / 18

Preliminary results

x

0.0 0.2 0.4 0.6 0.8 1.0

y

0.0
0.2

0.4
0.6

0.8
1.0

z

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

g ≡ 0

g
≡

1.4

0rad

1rad2rad

3rad

4rad

f ≡ 5

Ongoing master thesis work of Frank van Ruiten, TU Delft

16 / 18

Preliminary results

x

−1.00
−0.75

−0.50
−0.25

0.00
0.25

0.50
0.75

1.00
y

−1.00−0.75−0.50−0.250.000.25
0.50

0.75
1.00

z

0.0
0.5
1.0
1.5
2.0
2.5

0.5

1.0

1.5

2.0

2.5

g ≡ 0

g ≡ 2.5

0rad

1rad2rad

3rad

4rad

f ≡ 3.3

Ongoing master thesis work of Frank van Ruiten, TU Delft

17 / 18

Preliminary results

x

−1.00
−0.75

−0.50
−0.25

0.00
0.25

0.50
0.75

1.00
y

−1.00−0.75−0.50−0.250.000.250.50
0.75

1.00

z

0.0
0.5
1.0
1.5
2.0
2.5

0.5

1.0

1.5

2.0

2.5

g ≡ 0

g ≡ 2.5

0rad

1rad2rad

3rad

4rad

f ≡ 8.7

Ongoing master thesis work of Frank van Ruiten, TU Delft

17 / 18

Preliminary results

x

−1.00
−0.75

−0.50
−0.25

0.00
0.25

0.50
0.75

1.00
y

−1.00−0.75−0.50−0.250.000.25
0.50

0.75
1.00

z

0.0
0.5
1.0
1.5
2.0
2.5
3.0

0.5

1.0

1.5

2.0

2.5

g ≡ 0

g ≡ 2.5

0rad

1rad2rad

3rad

4rad

f ≡ 15.5

Ongoing master thesis work of Frank van Ruiten, TU Delft

17 / 18

Conclusion and outlook
IgaNets combine classical numerics with scientific machine learning and may finally enable
integrated and interactive computer-aided design-through-analysis workflows

Todo
• performance and hyper-parameter tuning
• extension to multi-patch topologies
• use of IGA and IgaNets in concert
• transfer learning upon basis refinement

Short paper: Möller, Toshniwal, van Ruiten: Physics-informed
machine learning embedded into isogeometric analysis, 2021. �

MATHEMATICS:
 K E Y E N A B L I N G T E C H N O L O G Y
F O R S C I E N T I F I C M A C H I N E
L E A R N I N G

—

We are hiring! AIO position will open soon! Thank you for your attention!

18 / 18

Conclusion and outlook
IgaNets combine classical numerics with scientific machine learning and may finally enable
integrated and interactive computer-aided design-through-analysis workflows

Todo
• performance and hyper-parameter tuning
• extension to multi-patch topologies
• use of IGA and IgaNets in concert
• transfer learning upon basis refinement

Short paper: Möller, Toshniwal, van Ruiten: Physics-informed
machine learning embedded into isogeometric analysis, 2021. �

MATHEMATICS:
 K E Y E N A B L I N G T E C H N O L O G Y
F O R S C I E N T I F I C M A C H I N E
L E A R N I N G

—

We are hiring! AIO position will open soon! Thank you for your attention!

18 / 18

