IgaNets: Physics-Informed Machine Learning Embedded Into Isogeometric Analysis

Matthias Möller, Deepesh Toshniwal, Frank van Ruiten

Numerical Analysis, Delft Institute of Applied Mathematics
EEMCS, Delft University of Technology
NMC Scientific Days
19 \& 20 April 2022

Numerics for PDE analysis

Many physical processes are modelled mathematically by (systems of) PDEs that require fast \& accurate numerical methods to compute approximate solutions:

- particle methods: PIC (1955), SPH (1977), DPD (1992), RKPM (1995), ...
- hybrid particle-mesh methods: MPM (1990s), ...
- mesh-based methods: FEM (1940s), FDM (1950s), FVM (1971), IGA (2005), ...

[^0]
Numerics for PDE analysis

Many physical processes are modelled mathematically by (systems of) PDEs that require fast \& accurate numerical methods to compute approximate solutions:

- particle methods: PIC (1955), SPH (1977), DPD (1992), RKPM (1995), ...
- hybrid particle-mesh methods: MPM (1990s), ...
- mesh-based methods: FEM (1940s), FDM (1950s), FVM (1971), IGA (2005), ...

How fast is fast? And is it just about analysis?

[^1]
Design through Analysis

We want it all: from really fast \& moderately accurate to moderately fast \& highly accurate!

[^2]
SciML for PDE analysis

- Physics-informed neural networks (PINNs) [Raissi, Perdikaris, Karniadakis, 2019]

SciML for PDE analysis

- Physics-informed neural networks (PINNs) [Raissi, Perdikaris, Karniadakis, 2019]
+ No pre-calculated data needed (unsupervised learning)
+ Can be augmented with data (faster decay of loss function)
+ Applicable to arbitrary PDEs (extra effort might be needed to impose 'physics')
- Convergence theory is in its infancy (different from classical numerical methods theory)
- Poor extrapolation capabilities (different geometries, problem parameters)
- Space-time treatment of time-dependent problems

SciML for PDE analysis

- Physics-informed neural networks (PINNs) [Raissi, Perdikaris, Karniadakis, 2019]
- Fourier neural operators (FNO) [Li, Kovachki, Azizzadenesheli, Liu, Bhattacharya, Stuart, Anandkumar, 2020]
(a)

(b)

SciML for PDE analysis

- Physics-informed neural networks (PINNs) [Raissi, Perdikaris, Karniadakis, 2019]
- Fourier neural operators (FNO) [Li, Kovachki, Azizzadenesheli, Liu, Bhattacharya, Stuart, Anandkumar, 2020]
+ Aims to learn the operator (not the PDE problem)
- Pre-calculated training data is needed (supervised learning)
- Assumes an efficient Fourier approximation of the solution
- Designed for time-dependent PDEs

SciML for PDE analysis

- Physics-informed neural networks (PINNs) [Raissi, Perdikaris, Karniadakis, 2019]
- Fourier neural operators (FNO) [Li, Kovachki, Azizzadenesheli, Liu, Bhattacharya, Stuart, Anandkumar, 2020]
- Learning nonlinear operators (DeepONets) [Lu, Jin, Pang, Zhang, Karniadakis, 2021]

$$
G_{\theta}(u)(y)=\sum_{k=1}^{q} \underbrace{b_{k}\left(u\left(x_{1}\right), u\left(x_{2}\right), \ldots, u\left(x_{m}\right)\right)}_{\text {branch }} \underbrace{t_{k}(y)}_{\text {trunk }}
$$

+ Aims to learn the operator (not the PDE problem)
+ Claims to have excellent extrapolation capabilities
- Pre-calculated training data is needed (supervised learning)
- Designed for time-dependent PDEs

SciML for PDE analysis

- Physics-informed neural networks (PINNs) [Raissi, Perdikaris, Karniadakis, 2019]
- Fourier neural operators (FNO) [Li, Kovachki, Azizzadenesheli, Liu, Bhattacharya, Stuart, Anandkumar, 2020]
- Learning nonlinear operators (DeepONets) [Lu, Jin, Pang, Zhang, Karniadakis, 2021]

$$
G_{\theta}(u)(y)=\sum_{k=1}^{q} \underbrace{b_{k}\left(u\left(x_{1}\right), u\left(x_{2}\right), \ldots, u\left(x_{m}\right)\right)}_{\text {branch }} \underbrace{t_{k}(y)}_{\text {trunk }}
$$

+ Aims to learn the operator (not the PDE problem)
+ Claims to have excellent extrapolation capabilities
- Pre-calculated training data is needed (supervised learning)
- Designed for time-dependent PDEs

Combine mesh-based numerics with SciML for PDE analysis

Isogeometric Analysis

B-spline basis functions

$$
\begin{aligned}
b_{\ell}^{0}(\xi) & = \begin{cases}1 & \text { if } \xi_{\ell} \leq \xi<\xi_{\ell+1} \\
0 & \text { otherwise }\end{cases} \\
b_{\ell}^{p}(\xi) & =\frac{\xi-\xi_{\ell}}{\xi_{\ell+p}-\xi_{\ell}} b_{\ell}^{p-1}(\xi) \\
& +\frac{\xi_{\ell+p+1}-\xi}{\xi_{\ell+p+1}-\xi_{\ell+1}} b_{\ell+1}^{p-1}(\xi)
\end{aligned}
$$

T.J.R. Hughes, J.A.Cottrell, Y.Bazilevs: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. CMAME $194,2005$.

Isogeometric Analysis

B-spline basis functions

$$
\begin{aligned}
b_{\ell}^{0}(\xi) & = \begin{cases}1 & \text { if } \xi_{\ell} \leq \xi<\xi_{\ell+1} \\
0 & \text { otherwise }\end{cases} \\
b_{\ell}^{p}(\xi) & =\frac{\xi-\xi_{\ell}}{\xi_{\ell+p}-\xi_{\ell}} b_{\ell}^{p-1}(\xi) \\
& +\frac{\xi_{\ell+p+1}-\xi}{\xi_{\ell+p+1}-\xi_{\ell+1}} b_{\ell+1}^{p-1}(\xi)
\end{aligned}
$$

Many good properties: compact support $\left[\xi_{\ell}, \xi_{\ell+p+1}\right)$, positive function values over support interval, derivatives of B-splines are combinations of lower-order B-splines, ...

[^3]
Isogeometric Analysis

Paradigm: represent 'everything' in terms of tensor products of B-spline basis functions

$$
B_{i}(\xi, \eta):=b_{\ell}^{p}(\xi) \cdot b_{k}^{q}(\eta), \quad i:=(k-1) \cdot n_{\ell}+\ell, \quad 1 \leq \ell \leq n_{\ell}, \quad 1 \leq k \leq n_{k},
$$

Isogeometric Analysis

Paradigm: represent 'everything' in terms of tensor products of B-spline basis functions

$$
B_{i}(\xi, \eta):=b_{\ell}^{p}(\xi) \cdot b_{k}^{q}(\eta), \quad i:=(k-1) \cdot n_{\ell}+\ell, \quad 1 \leq \ell \leq n_{\ell}, \quad 1 \leq k \leq n_{k},
$$

Many more good properties: partition of unity $\sum_{i=1}^{n} B_{i}(\xi, \eta) \equiv 1, C^{p-1}$ continuity, \ldots

Isogeometric Analysis

Geometry: bijective mapping from the unit square to the physical domain $\Omega_{h} \subset \mathbb{R}^{d}$

$$
\mathbf{x}_{h}(\xi, \eta)=\sum_{i=1}^{n} B_{i}(\xi, \eta) \cdot \mathbf{x}_{i} \quad \forall(\xi, \eta) \in[0,1]^{2}=: \hat{\Omega}
$$

- the shape of Ω_{h} is fully specified by the set of control points $\mathbf{x}_{i} \in \mathbb{R}^{d}$

Isogeometric Analysis

Geometry: bijective mapping from the unit square to the physical domain $\Omega_{h} \subset \mathbb{R}^{d}$

$$
\mathbf{x}_{h}(\xi, \eta)=\sum_{i=1}^{n} B_{i}(\xi, \eta) \cdot \mathbf{x}_{i} \quad \forall(\xi, \eta) \in[0,1]^{2}=: \hat{\Omega}
$$

- the shape of Ω_{h} is fully specified by the set of control points $\mathbf{x}_{i} \in \mathbb{R}^{d}$
- interior control points must be chosen such that 'grid lines' do not fold as this violates the bijectivity of $\mathbf{x}_{h}: \hat{\Omega} \rightarrow \Omega_{h}$

Isogeometric Analysis

Geometry: bijective mapping from the unit square to the physical domain $\Omega_{h} \subset \mathbb{R}^{d}$

$$
\mathbf{x}_{h}(\xi, \eta)=\sum_{i=1}^{n} B_{i}(\xi, \eta) \cdot \mathbf{x}_{i} \quad \forall(\xi, \eta) \in[0,1]^{2}=: \hat{\Omega}
$$

- the shape of Ω_{h} is fully specified by the set of control points $\mathbf{x}_{i} \in \mathbb{R}^{d}$
- interior control points must be chosen such that 'grid lines' do not fold as this violates the bijectivity of $\mathrm{x}_{h}: \hat{\Omega} \rightarrow \Omega_{h}$
- refinement in h (knot insertion) and p (order elevation) preserves the shape of Ω_{h} and can be used to generate finer computational 'grids' for the analysis

Isogeometric Analysis

Data, boundary conditions, and solution: forward mappings from the unit square

$$
\begin{array}{rll}
\text { (r.h.s vector) } & f_{h} \circ \mathbf{x}_{h}(\xi, \eta)=\sum_{i=1}^{n} B_{i}(\xi, \eta) \cdot f_{i} & \forall(\xi, \eta) \in[0,1]^{2} \\
\text { (boundary conditions) } & g_{h} \circ \mathbf{x}_{h}(\xi, \eta)=\sum_{i=1}^{n} B_{i}(\xi, \eta) \cdot g_{i} & \forall(\xi, \eta) \in \partial[0,1]^{2} \\
\text { (solution) } & u_{h} \circ \mathbf{x}_{h}(\xi, \eta)=\sum_{i=1}^{n} B_{i}(\xi, \eta) \cdot u_{i} & \forall(\xi, \eta) \in[0,1]^{2}
\end{array}
$$

Isogeometric Analysis

Data, boundary conditions, and solution: forward mappings from the unit square

$$
\begin{array}{rll}
\text { (r.h.s vector) } & f_{h} \circ \mathbf{x}_{h}(\xi, \eta)=\sum_{i=1}^{n} B_{i}(\xi, \eta) \cdot f_{i} & \forall(\xi, \eta) \in[0,1]^{2} \\
\text { (boundary conditions) } & g_{h} \circ \mathbf{x}_{h}(\xi, \eta)=\sum_{i=1}^{n} B_{i}(\xi, \eta) \cdot g_{i} & \forall(\xi, \eta) \in \partial[0,1]^{2} \\
\text { (solution) } & u_{h} \circ \mathbf{x}_{h}(\xi, \eta)=\sum_{i=1}^{n} B_{i}(\xi, \eta) \cdot u_{i} & \forall(\xi, \eta) \in[0,1]^{2}
\end{array}
$$

Model problem: Poisson's equation

$$
-\Delta u_{h}=f_{h} \quad \text { in } \quad \Omega_{h}, \quad u_{h}=g_{h} \quad \text { on } \quad \partial \Omega_{h}
$$

Isogeometric Analysis

Different solution approaches

- Galerkin-type IGA (Hughes et al. 2005 and many more)
- Isogeometric collocation methods (Reali, Hughes, 2015)
- Variational collocation method (Gomez, De Lorenzis, 2016)

Isogeometric Analysis

Different solution approaches

- Galerkin-type IGA (Hughes et al. 2005 and many more)
- Isogeometric collocation methods (Reali, Hughes, 2015)
- Variational collocation method (Gomez, De Lorenzis, 2016)

Abstract representation

Given \mathbf{x}_{i} (geometry), f_{i} (r.h.s. vector), and g_{i} (boundary conditions), compute

$$
\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]=A^{-1}\left(\left[\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right],\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{n}
\end{array}\right]\right) \cdot b\left(\left[\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right],\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right],\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{n}
\end{array}\right]\right)
$$

Any point of the solution can afterwards be obtained by a simple function evaluation

$$
(\xi, \eta) \in[0,1]^{2} \quad \mapsto \quad u_{h} \circ \mathbf{x}_{h}(\xi, \eta)=\left[B_{1}(\xi, \eta), \ldots, B_{n}(\xi, \eta)\right] \cdot\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]
$$

Isogeometric Analysis

Abstract representation

Given \mathbf{x}_{i} (geometry), f_{i} (r.h.s. vector), and g_{i} (boundary conditions), compute

$$
\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]=A^{-1}\left(\left[\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right],\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{n}
\end{array}\right]\right) \cdot b\left(\left[\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right],\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right],\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{n}
\end{array}\right]\right)
$$

Any point of the solution can afterwards be obtained by a simple function evaluation

$$
(\xi, \eta) \in[0,1]^{2} \quad \mapsto \quad u_{h} \circ \mathbf{x}_{h}(\xi, \eta)=\left[B_{1}(\xi, \eta), \ldots, B_{n}(\xi, \eta)\right] \cdot\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]
$$

Let us interpret the sets of \mathbf{B}-spline coefficients $\left\{\mathbf{x}_{i}\right\},\left\{f_{i}\right\}$, and $\left\{g_{i}\right\}$ as an efficient encoding of our PDE problem that is fed into our IGA machinery as input.
The output of our IGA machinery are the B-spline coefficients $\left\{u_{i}\right\}$ of the solution.

Isogeometric Analysis + PINNs

IgaNet: replace computation by physics-informed machine learning

$$
\begin{aligned}
& {\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]=A^{-1}\left(\left[\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right],\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{n}
\end{array}\right]\right) \cdot b\left(\left[\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right],\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right],\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{n}
\end{array}\right]\right)} \\
& {\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]=\operatorname{PINN}\left(\left[\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right],\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right],\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{n}
\end{array}\right] ;\left(\xi_{k}, \eta_{k}\right)_{k=1}^{N_{\text {samples }}}\right)}
\end{aligned}
$$

Compute the solution by evaluating the trained neural network

$$
u_{h}(\xi, \eta) \approx\left[B_{1}(\xi, \eta), \ldots, B_{n}(\xi, \eta)\right] \cdot\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]=\operatorname{PINN}\left(\left[\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right],\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right],\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{n}
\end{array}\right] ;(\xi, \eta)\right)
$$

IgaNet architecture

Loss function

$$
\begin{aligned}
& \operatorname{loss}_{\mathrm{PDE}}=\frac{\alpha}{N_{\Omega}} \sum_{k=1}^{N_{\Omega}}\left|\Delta\left[u_{h} \circ \mathbf{x}_{h}\left(\xi_{k}, \eta_{k}\right)\right]-f_{h} \circ \mathbf{x}_{h}\left(\xi_{k}, \eta_{k}\right)\right|^{2} \\
& \operatorname{loss}_{\mathrm{BDR}}=\frac{\beta}{N_{\Gamma}} \sum_{k=1}^{N_{\Gamma}}\left|u_{h} \circ \mathbf{x}_{h}\left(\xi_{k}, \eta_{k}\right)-g_{h} \circ \mathbf{x}_{h}\left(\xi_{k}, \eta_{k}\right)\right|^{2}
\end{aligned}
$$

Express derivatives with respect to physical space variables using the Jacobian J, the Hessian H and the matrix of squared first derivatives Q [Schillinger et al. 2013]:

Two-level training strategy

For $\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right] \in \mathcal{S}_{\text {geo }},\left[f_{1}, \ldots, f_{n}\right] \in \mathcal{S}_{\text {rhs }},\left[g_{1}, \ldots, g_{n}\right] \in \mathcal{S}_{\text {bcond }} \mathbf{d o}$
For a batch of randomly sampled $\left(\xi_{k}, \eta_{k}\right) \in[0,1]^{2}$ do

$$
\text { Train PINN }\left(\left[\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right],\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right],\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{n}
\end{array}\right] ;\left(\xi_{k}, \eta_{k}\right)_{k=1}^{N_{\text {samples }}}\right) \mapsto\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]
$$

EndFor

EndFor

IGA details: 7×7 bi-cubic tensor-product B-splines for \mathbf{x}_{h} and u_{h}, C^{2}-continuous
PINN details: TensorFlow 2.6, 7-layer neural network with 50 neurons per layer and ReLU activation function (except for output layer), Adam optimizer, 30.000 epochs, training is stopped after 3.000 epochs w/o improvement of the loss value

[^4]
Test case: Poisson's equation on a variable annulus

Ongoing master thesis work of Frank van Ruiten, TU Delft

Preliminary results

Ongoing master thesis work of Frank van Ruiten, TU Delft

Preliminary results

Ongoing master thesis work of Frank van Ruiten, TU Delft

Preliminary results

Ongoing master thesis work of Frank van Ruiten, TU Delft

Preliminary results

Ongoing master thesis work of Frank van Ruiten, TU Delft

Preliminary results

Ongoing master thesis work of Frank van Ruiten, TU Delft

Conclusion and outlook

IgaNets combine classical numerics with scientific machine learning and may finally enable integrated and interactive computer-aided design-through-analysis workflows

Todo

- performance and hyper-parameter tuning
- extension to multi-patch topologies
- use of IGA and IgaNets in concert
- transfer learning upon basis refinement

Short paper: Möller, Toshniwal, van Ruiten: Physics-informed machine learning embedded into isogeometric analysis, 2021. 鲯

Conclusion and outlook

IgaNets combine classical numerics with scientific machine learning and may finally enable integrated and interactive computer-aided design-through-analysis workflows

Todo

- performance and hyper-parameter tuning
- extension to multi-patch topologies
- use of IGA and IgaNets in concert
- transfer learning upon basis refinement

Short paper: Möller, Toshniwal, van Ruiten: Physics-informed machine learning embedded into isogeometric analysis, 2021. 鲯

We are hiring! AIO position will open soon! Thank you for your attention!

[^0]: Credit: www.superzelle.de - Janek Zimmer; University of Texas at Dallas (DOI: 10.1063/5.0036640); University of Minnesota - Eolos Wind Energy Research

[^1]: Credit: www.superzelle.de - Janek Zimmer; University of Texas at Dallas (DOI: 10.1063/5.0036640); University of Minnesota - Eolos Wind Energy Research

[^2]: Credit: Siemens - Simulation for Design Engineers

[^3]: T.J.R. Hughes, J.A.Cottrell, Y.Bazilevs: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. CMAME $194,2005$.

[^4]: Ongoing master thesis work of Frank van Ruiten, TU Delft

