Algebraic Flux Correction Schemes for High-Order B-Spline Based Finite Element Approximations

Numerical Analysis group

Matthias Möller m.moller@tudelft.nl

7th DIAM onderwijs- en onderzoeksdag, 5th November 2014

Delt

Outline

Motivation

Finite elements in a nutshell

2 Introduction to B-splines

Knot insertion (*h*-refinement) Order elevation (*p*-refinement) Geometric mapping Definition of ansatz spaces Properties of B-splines

- 3 Constrained data projection Numerical examples
- 4 Constrained transport Numerical examples

TUDelft

M. Möller (NA group)

Finite elements in a nutshell

• Strong problem: find $u \in C^k(\Omega)$ such that

$$\mathcal{L}u = f$$
 in Ω + bc's

• Weighted residual formulation: find $u \in V$ such that

$$\int_{\Omega} w[\mathcal{L}u - f] \, \mathrm{d}\mathbf{x} = 0 \quad \forall w \in W$$

- Boundary conditions:
 - V (trial) and W (test spaces) contain essential bc's
 - natural bc's are incorporated via integration by parts

Finite elements in a nutshell, cont'd

• Galerkin finite elements: choose finite-dimensional spaces

$$V_h := \{\varphi_j\} \approx V$$
 and $W_h := \{\phi_i\} \approx W$

and find $u_h = \sum_j u_j \varphi_j \in V_h$ such that

$$\int_{\Omega_h} \phi_i [\mathcal{L}u_h - f] \, \mathrm{d}\mathbf{x} = 0 \quad \forall i = 1, \dots, \dim(W_h)$$

neglecting complications due to bc's this yields

$$\sum_{j} \left[\int_{\Omega_h} \phi_i \mathcal{L} \varphi_j \, \mathrm{d} \mathbf{x} \right] u_j = \int_{\Omega_h} \phi_i f \, \mathrm{d} \mathbf{x} \quad \forall i = 1, \dots, \dim(W_h)$$

TUDelft

M. Möller (NA group)

Problem

• Poor approximation of discontinuities/steep gradients if standard Galerkin methods are used without proper stabilization

TUDelft

A I >
A I >
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Problem

• Poor approximation of discontinuities/steep gradients if standard Galerkin methods are used with proper stabilization

 L_2 -projection

convective transport

A I >
A I >
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

TUDelft

Algebraic Flux Correction

Methodology based on algebraic design criteria to derive robust and accurate **high-resolution finite element schemes** for

- Constrained data projection [5]
- Convection-dominated transport processes [3, 5, 6, 7, 10, 11]
- Anisotropic diffusion processes [3, 9]
- Processes with maximum-packing limit [4]

• ..

Many 'success stories' published ... ;-)

Algebraic Flux Correction

Methodology based on algebraic design criteria to derive robust and accurate **high-resolution finite element schemes** for

- Constrained data projection [5]
- Convection-dominated transport processes [3, 5, 6, 7, 10, 11]
- Anisotropic diffusion processes [3, 9]
- Processes with maximum-packing limit [4]

• ..

Many 'success stories' published ... ;-) mostly for P_1 and Q_1 finite elements ;-(

TUDelft

Algebraic Flux Correction, cont'd

Extension of AFC to

• \tilde{P}_1/\tilde{Q}_1 elements [12]:

CR-FE satisfy the necessary prerequisites [...] fail completely [...] yielding overdiffusive approximate solutions. RT-FE provides an accurate resolution [...] if the integral mean value based variant is adopted.

• P₂ elements [2]:

In summary, algebraic flux correction for quadratic finite elements seems to be feasible but gives rise to many challenging open problems.

Objective: to extend AFC to high-order B-spline basis functions

B-splines in a nutshell

Define **knot vector** $\Xi = (\xi_1, \xi_2, \dots, \xi_{n+p+1})$ as a sequence of non-decreasing coordinates in the parameter space $\Omega_0 = [0, 1]$:

- $\xi_i \in \mathbb{R}$ is the i^{th} knot with index $i = 1, 2, \ldots, n + p + 1$
- p is the polynomial order of the B-splines
- *n* is the number of B-spline functions

Cox-de Boor recursion formula for $N_{i,p}: \Omega_0 \to \mathbb{R}$

$$p = 0: N_{i,0}(\xi) = \begin{cases} 1 & \text{if } \xi_i \le \xi < \xi_{i+1} \\ 0 & \text{otherwise} \end{cases} \quad \text{define } \frac{0}{0} = 0 \\ p > 0: N_{i,p}(\xi) = \frac{\xi - \xi_i}{\xi_{i+p} - \xi_i} N_{i,p-1}(\xi) + \frac{\xi_{i+p+1} - \xi}{\xi_{i+p+1} - \xi_{i+1}} N_{i+1,p-1}(\xi) \end{cases}$$

TUDelft

M. Möller (NA group)

< = > < = > < = >

Knot insertion (*h*-refinement)

In general we have C^{p-m_i} -continuity across element boundaries, where m_i is the multiplicity of the value of ξ_i in the knot vector.

Ť UDelft							
		< □ ▶	- 1 D	-∢ ≣ ⊁	<≣>	臣	৩১৫
M. Möller (NA group)	AFC for B-Spline based FEM						9 / 34

Knot insertion, cont'd

In general we have C^{p-m_i} -continuity across element boundaries, where m_i is the multiplicity of the value of ξ_i in the knot vector.

Ť UDelft							
		< □ >	🖪 🗗 🕨	-∢ ≣ ⊁	_ ∢ ≣ ≯	· 臣	୬୯୯
M. Möller (NA group)	AFC for B-Spline based FEM						10 / 34

Order elevation

one element

In contrast to standard Lagrange finite element basis functions, the B-spline functions never become negative over their support.

Nonuniform continuity at element boundaries

 4^{th} -order B-spline functions

M. Möller (NA group)

TUDelft

AFC for B-Spline based FEM

Nonuniform continuity at element boundaries

First derivatives of 4^{th} -order B-spline functions

TUDelft

M. Möller (NA group)

AFC for B-Spline based FEM

13 / 34

Geometric mapping

 Define mapping between parameter space Ω₀ = [0, 1] and the computational domain Ω using control points p_i ∈ ℝ^d, d = 1, 2, 3

$$\mathbf{G}: \Omega_0 \mapsto \Omega, \qquad \mathbf{G}(\xi) = \sum_{i=1}^n N_{i,p}(\xi) \mathbf{p}_i$$

Examples:

$$\begin{split} \mathbf{G} &: [0,1] \mapsto [a,b] \subset \mathbb{R} & \text{(linear mapping)} \\ \mathbf{G} &: [0,1] \mapsto \text{curve in } \mathbb{R}^2 \text{ or } \mathbb{R}^3 & \text{(work in progress)} \end{split}$$

Ansatz spaces

• Construct ansatz space from B-spline basis functions

$$V_h(\Omega_0, p, \Xi, \mathbf{G}) = \operatorname{span}\{\varphi_i(x) = N_{i,p} \circ \mathbf{G}^{-1}(x)\}$$

Approximate the solution the standard way

$$u(x) \approx u_h(x) = \sum_{i=1}^n \varphi_i(x)u_i, \quad x \in \Omega$$

Approximate fluxes by Fletcher's group formulation, e.g.,

$$v(x)u(x) \approx (vu)_h(x) = \sum_{i=1}^n \varphi_i(x)(v_i u_i), \quad x \in \Omega$$

TUDelft

M. Möller (NA group)

Properties of B-splines

• Derivative of p^{th} order B-spline is a B-spline of order p-1

$$N_{i,p}'(\xi) = \frac{p}{\xi_{i+p} - \xi_i} N_{i,p-1}(\xi) - \frac{p}{\xi_{i+p+1} - \xi_{i+1}} N_{i+1,p-1}(\xi)$$

• B-splines form a partition of unity. That is, for all $\xi \in [a,b]$

$$\sum_{i=1}^{n} N_{i,p}(\xi) = 1 \quad \Rightarrow \quad \sum_{i=1}^{n} N_{i,p}'(\xi) = 0$$

AFC-1: Edge-wise flux decomposition $c_{ij} = \int_{a}^{b} \varphi_{i} \varphi'_{j} dx, \quad \sum_{j=1}^{n} c_{ij} = 0 \quad \Rightarrow \quad \sum_{j=1}^{n} c_{ij} u_{j} = \sum_{j \neq i} c_{ij} (u_{j} - u_{i})$

TUDelft

Properties of B-splines, cont'd

• B-splines of order p have compact support

supp
$$N_{i,p}(\xi) = [\xi_i, \xi_{i+p+1}), \quad i = 1, \dots, n$$

B-splines are strictly positive over the interior of their support

$$N_{i,p}(\xi) > 0$$
 for $\xi \in (\xi_i, \xi_{i+p+1}), i = 1, \dots, n$

AFC-2: positive consistent and lumped mass matrices

$$m_{ij} = \int_a^b \varphi_i \varphi_j \, dx > 0 \quad \Rightarrow \quad m_i = \sum_{j=1}^n m_{ij} > 0$$

M. Möller (NA group)

AFC for B-Spline based FEM

Constrained data projection

Find
$$u \in L^2([a,b])$$
 s.t. $\int_a^b w(u-f)dx = 0 \quad \forall w \in L^2([a,b])$

Consistent L_2 -projection Lu $\sum_{j=1}^n m_{ij} u_j^H = \int_a^b \varphi_i f \, dx$

Lumped
$$L_2$$
-projection
 $m_i u_i^L = \int_a^b \varphi_i f \, dx$

Constrained
$$L_2$$
-projection [5]
 $u_i^{\star} = u_i^L + \frac{1}{m_i} \sum_{j \neq i} \alpha_{ij} f_{ij}^H, \quad 0 \le \alpha_{ij} = \alpha_{ji} \le 1, \quad f_{ji}^H = -f_{ij}^H$

TUDelft

M. Möller (NA group)

AFC for B-Spline based FEM

Symmetric flux limiting algorithm [5]

1 Prelimited raw antidiffusive fluxes

$$f_{ij}^{H} = \begin{cases} m_{ij}(u_{i}^{H} - u_{j}^{H}), & \text{if } (u_{i}^{H} - u_{j}^{H})(u_{i}^{L} - u_{j}^{L}) > 0\\ 0, & \text{otherwise (!)} \end{cases}$$

2 Bounds and antidiffusive increments

$$Q_{i}^{\pm} = \max_{\substack{j \neq i}}^{\max} (0, u_{i}^{L} - u_{j}^{L}), \qquad P_{i}^{\pm} = \max_{\substack{j \neq i}}^{\max} (0, f_{ij})$$

S Nodal and edge-wise limiting coefficients

$$R_i^{\pm} = \frac{m_i Q_i^{\pm}}{P_i^{\pm}}, \qquad \alpha_{ij} = \begin{cases} \min(R_i^+, R_j^-), & \text{if } f_{ij} > 0\\ \min(R_j^+, R_i^-), & \text{if } f_{ij} < 0 \end{cases}$$

TUDelft

M. Möller (NA group)

Test case: Semi-ellipse of McDonald

p = 1, n = 32 L_1 -/ L_2 -errors $||u^H - u||_1 = 0.0653$ 0.8 $||u^L - u||_1 = 0.0684$ 0.6 $||u^{\star} - u||_1 = 0.0606$ 0.4 0.2 $||u^H - u||_2 = 0.1774$ $||u^L - u||_2 = 0.1686$ 0 $||u^{\star} - u||_2 = 0.1677$ 0.2 0.4 0.6 0.8 0

TUDelft

M. Möller (NA group)

AFC for B-Spline based FEM

Test case: semi-ellipse of McDonald

TUDelft

M. Möller (NA group)

AFC for B-Spline based FEM

Test case: semi-ellipse of McDonald

TUDelft

M. Möller (NA group)

AFC for B-Spline based FEM

Test case: semi-ellipse of McDonald

TUDelft

M. Möller (NA group)

AFC for B-Spline based FEM

Thought experiment: What are ideal knots?

AFC for B-Spline based FEM

Thought experiment: What are ideal knots?

• Deduce ideal knots from nodal correction factors or residual

 $\Xi = (0, 0, 0, 0, 0.1, 0.2, 0.2, 0.2, 0.2, 0.3, 0.4, 0.4, 0.4, 0.4, 0.5, 0.6, 0.6, 0.6, 0.6, 0.6, 0.7, 0.7, 0.7, 0.8, 0.8, 0.8, 0.8, 0.9, 1, 1, 1, 1)$

• Use smoothness indicator [8] to avoid peak clipping.

″uDelft

	0.5		
VI. IVIO	IEI	INA.	PLOUD

Constrained transport Find $u \in H_D^1([a, b])$ s.t. $\int_a^b w(vu)_x + dw_x u_x dx = 0 \quad \forall w \in H_0^1([a, b])$

Galerkin scheme

$$\sum_{j=1}^{n} (k_{ij} + s_{ij}) u_j^H = 0$$

Discrete upwind scheme

$$\sum_{j=1}^{n} (k_{ij} + d_{ij} + s_{ij}) u_j^L = 0$$

$$k_{ij} = v_j \int_a^b \varphi_i \varphi'_j dx, \quad s_{ij} = d \int_a^b \varphi'_i \varphi'_j dx, \quad d_{ij} = -\max(k_{ij}, 0, k_{ji})$$

High-resolution TVD-type scheme [11]

$$\sum_{j=1}^{n} (k_{ij} + d_{ij} + s_{ij}) u_j^{\star} + \sum_{j \neq i} \alpha_{ij} f_{ij} = 0, \quad f_{ji} = -f_{ij}$$

TUDelft

M. Möller (NA group)

Test case: steady convection-diffusion $\frac{v}{d} = 100$

 $||u^H - u||_1 = 0.0325$

 $||u^{H} - u||_{1} = 0.0415$ $||u^{H} - u||_{1} = 0.0365$ $||u^{L} - u||_{1} = 0.0056$ $||u^{L} - u||_{1} = 0.0061$ $||u^{L} - u||_{1} = 0.0059$ $||u^{\star} - u||_{1} = 0.0028$ $||u^{\star} - u||_{1} = 0.0031$ $||u^{\star} - u||_{1} = 0.0029$

TUDelft

M. Möller (NA group)

Summary

- Algebraic flux correction concept has been generalized to higher-order approximations based on B-spline bases
- Original lowest-order approximation is naturally included
- Nodal correction factors/residual provide information to locally reduce 'inter-element' continuity by increasing knot multiplicity
- Peak clipping at smooth extrema is prevented by locally deactivating the flux limiter using the smoothness indicator [8]

Current and future research

- Analysis for general geometric mappings $\mathbf{G}:\Omega_0\mapsto\Omega$
- Extension to multi-dimensions by tensor-product construction

$$\mathbf{G}(\xi,\eta,\zeta) = \sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{k=1}^{l} N_{i,p}(\xi) N_{j,q}(\eta) N_{k,r}(\zeta) \mathbf{p}_{ijk}$$

- Embed local B-spline based AFC-scheme into global outer Galerkin method with unstructured quad/hexa macro mesh
- Exploit potential of fully structured data per macro element
- A. Jaeschke (COSSE-MSc), S-R. Janssen (DD: AM-LR)

Outlook: Isogeometric Analysis [1]

• Poor approximation of curved boundaries (with low-order FEs)

• IgA approach adopts the same (hierarchical) B-spline, NURBS, etc. basis functions for the approximate solution $u_h \approx u$ and for *exactly* representing the geometry $\Omega_h = \Omega$

Our activities in IgA:

- bi-weekly PhD-seminar (participants from LR)
- PhD-candidate in CSC-15 and/or EU-project (?)

TUDelft M. Möller (NA group) AFC

References I

T.J.R. Hughes, J.A. Cottrell, and Y. Bazilevs.

Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement.

Computer Methods in Applied Mechanics and Engineering, 194:4135–4195, 2005.

D. Kuzmin.

On the design of algebraic flux correction schemes for quadratic finite elements.

Journal of Computational and Applied Mathematics, 218(1):79 – 87, 2008.

Special Issue: Finite Element Methods in Engineering and Science (FEMTEC 2006) Special Issue: Finite Element Methods in Engineering and Science (FEMTEC 2006).

References II

D. Kuzmin.

Linearity-preserving flux correction and convergence acceleration for constrained Galerkin schemes.

Journal of Computational and Applied Mathematics, 236(9):2317 – 2337, 2012.

D. Kuzmin and Y. Gorb.

A flux-corrected transport algorithm for handling the close-packing limit in dense suspensions.

Journal of Computational and Applied Mathematics, 236(18):4944 – 4951, 2012.

{FEMTEC} 2011: 3rd International Conference on Computational Methods in Engineering and Science, May 913, 2011.

References III

D. Kuzmin, M. Möller, J.N. Shadid, and M. Shashkov. Failsafe flux limiting and constrained data projections for equations of gas dynamics.

Journal of Computational Physics, 229(23):8766 – 8779, 2010.

- D. Kuzmin, M. Möller, and S. Turek. Multidimensional FEM-FCT schemes for arbitrary time stepping. International Journal for Numerical Methods in Fluids, 42(3):265–295, 2003.
- D. Kuzmin, M. Möller, and S. Turek.

High-resolution FEMFCT schemes for multidimensional conservation laws.

Computer Methods in Applied Mechanics and Engineering, 193(4547):4915 – 4946, 2004.

References IV

D. Kuzmin and F. Schieweck.

A parameter-free smoothness indicator for high-resolution finite element schemes.

Central European Journal of Mathematics, 11(8):1478 – 1488, 2013.

D. Kuzmin, M.J. Shashkov, and D. Svyatskiy.

A constrained finite element method satisfying the discrete maximum principle for anisotropic diffusion problems. *Journal of Computational Physics*, 228(9):3448 – 3463, 2009.

D. Kuzmin and S. Turek.

Flux correction tools for finite elements.

Journal of Computational Physics, 175(2):525 – 558, 2002.

References V

D. Kuzmin and S. Turek.

High-resolution FEM-TVD schemes based on a fully multidimensional flux limiter.

Journal of Computational Physics, 198(1):131 – 158, 2004.

M. Möller.

Algebraic flux correction for nonconforming finite element discretizations of scalar transport problems.

Computing, 95(5):425–448, 2013.

M. Möller (NA group)

AFC for B-Spline based FEM