
Coding in the cloud
New ways to teach programming classes

 Matthias Möller

Overview

• Motivation: OOSP-C++ course and lessons learnt last years

• INGInious: Overall concepts and adjustments for OOSP-C++ course

• Conclusions: Got interested? Then give it a try….

Motivation
Course: Object-Oriented Scientific Programming with C++ (OOSP-C++)

• Started as PhD seminar with 5-8 participants in 2015

• Has become a BSc/MSc/PhD course with about 80-100 participants

• Participants from all faculties within DCSE with very varying background

• Hands-on course (2h lectures + 4h lab sessions per week):

• Need for sufficiently many and well-trained TAs (difficult to find!)

• Reduce technical problems and use TAs for content-related support

Learning Objectives
1. Students will learn to design, implement, and systematically validate  

well-structured and maintainable efficient computer programs in C++ 
for solving scientific problems from their field of applications.

This requires a good knowledge of modern C++ features:

• OOP techniques: polymorphism, inheritance, encapsulation, abstraction

• Template meta-programming and compile-time optimisation techniques

• New (and really powerful) concepts introduced in C++11, 14, 17

together with discipline-related knowledge not taught in this course.

Learning Objectives
2. Students will learn to use professional software development tools

and workflows (version control systems, IDEs, build systems,
debuggers, …) for developing software projects in teams.

This requires

• TU-wide availability of pre-defined software stack

• Willingness of students to use ICT infrastructure from TU

• Understanding of the need for it (not just among students)

Data Stewards

Data Champions

TU Delft ICT-services

TU Delft Cluster

DCSE D:Dream

Lessons learned last years
1. Client-side solutions on students’ computers are doomed to fail:

• 1-2 weeks spent on giving installation support during lab sessions

• |SOSs x SCompilers| >> 1, so one cannot test all possibilities before

• C++ is platform dependent, so what is the reference for grading

• New C++14 or 17 features not available in outdated compilers

2. Students are reluctant to use TU computers (even if they worked)

Conclusion: Web-based server-side solution (with admin rights) needed;
step-by-step integration of software development aspects in next years

INGInious

• Open-source tool developed by the
CSE department at UCLouvain/BE

• Used at UCL and for edX courses

INGInious workflow
1. Student logs in to course web-site

2. Works on assignment in web formular

3. Submits the solution (history is stored)

4. System assesses the solution in Docker
container and returns feedback to student

5. Student revises/accepts submission

6. Final check by TAs/instructor for grading

Scalability (near-term)

Scalability (long-term)

INGInious.EWI.tudelft.nl
• Runs on virtual server (CentOS 7) hosted,

administrated and backed up by TUD-ICT

• First practical test in Q2 2018/19 for my
OOSP-C++ course (130 registrations)

File-based course structure
• /var/www/INGInious

• /Course1

• /Task1

• task.yaml

• run

• …

• /Task2

• task.yaml

• run

• …

• /Course2

• /Task1

• …

Webserver top-level directory

Course1 top-level directory

Task1 top-level directory

Task2 top-level directory

Course2 top-level directory

Description of task and assignment implemented in markdown language

Instructions for running/checking student submission and giving feedback

Good for backups and batch editing  
(if you know what you are doing)

Direct SSH login to host needed

Web-based task editor

Web-based task editor

Configuration of submission details

Task description

Student input

Task execution and feedback

Task execution and feedback

Assessment workflow

Template.cxx

1. Smart copy-and-paste:
Student input is parsed for
banned ‘expressions’ and
injected into template file.

Assessment workflow

Test configuration
Makefile

Template.cxx

2. Docker-based execution:
Input files are copied into new
docker container that compiles
submission based on Makefile. 
Compiler and execution output
is captured, post-processed
and presented to the student.

Assessment workflow

Test configuration
Makefile

Template.cxx

Flexible Python-based workflow developed by BSc student Sybold Hĳlkema

Python+Docker
RUN script:

• Shell scripts (from tutorial) for short answer and multiple-choice tasks

• Python script (by S. Hijlkema) for C++ (also for C) programming tasks

Docker container:

• Default containers with C/C++ (GCC 4.8.5), Python (2.7), …

• Customised containers with GCC 7.x and 8.x for C++14, 17 support

Example Dockerfile
FROM ingi/inginious-c-base
LABEL org.inginious.grading.name=“cpp-gcc7”
RUN yum install -y centos-release-scl && \
 yum-config-manager --enable rhel-server-rhscl-7-rpms && \
 yum install -y yum install -y devtoolset-7-gcc devtoolset-7-
gcc-c++ devtoolset-7-gdb devtoolset-7-cpp devtoolset-7-make cmake
devtoolset-7-valgrind devtoolset-7-binutils libstdc++ clang clang-
analyzer clang-devel llvm automake check check-devel CUnit CUnit-
devel zlib-devel openssl-devel time jansson-devel graphviz graphviz-
devel cppcheck && \
 yum clean all

Set PATH, LD_LIBRARY_PATH etcetera
ENV PATH=/opt/rh/…

The sky is the limit
• Install commercial compilers, non-free test backends, simulators, …

• Integrate proprietary libraries/tools (in binary form) in Docker image

• Use customised Docker container as

• abstraction to special hardware (NVIDIA-CUDA, Maxeler-FPGA, …)

• communicator to external computer system (QuTech, Cluster, …)

• drivers for software testing (fuzzing, regression, …)

It works on all platforms

• First real-world test in Q2 2018/2019 with >130 participants (LObj. 1)

• Integration of web-based IDE and DevTools planned for 2019/20 (LObj. 2)

• If you are interested to give it a try for your course, let me know!

Acknowledgement: Sybold Hijlkema, Niels de Koeijer 
Financial support by TU Delft Graduate School Kick-Start Funding

Outlook

