A survey of quantum computing for PDEs

Matthias Möller

Delft University of Technology
Delft Institute of Applied Mathematics

Research interests and collaborations

Quantum computing in aerospace engineering applications

Research interests and collaborations

Quantum algorithms and benchmarks for NISQ devices

This survey is based on ...

- A review of quantum algorithms for partial differential equations in fluid and structural mechanics
G. Balducci, B. Chen, MM, and R. de Breuker
in preparation for the special issue: Quantum Computing Applications in Computational Engineering in Frontiers in Mechanical Engineering, 2022
- Quantum Algorithms for Solving Partial Differential Equations Report by A. Pesah, 2020
- about 50 articles and reports cited in the works above

Guest Editors

Different quantum computing principles

- Discrete-variable quantum computing (DVQC): eigenstates of a discrete variable form the computational basis of a finite-dimensional Hilbert space

$$
|\psi\rangle=\sum_{i=0}^{2^{n}-1} c_{i}\left|b_{i}\right\rangle, \quad \sum_{i=0}^{2^{n}-1}\left|c_{i}\right|^{2}=1, \quad\left\langle b_{i} \mid b_{j}\right\rangle=\delta_{i j}
$$

- Continuous-variable quantum computing (CVQC): eigenstates of a continuous variable form the basis of an infinite-dimensional Hilbert space

$$
|\psi\rangle=\int_{-\infty}^{\infty} c(x)|x\rangle d x, \quad\left\langle x^{\prime} \mid x\right\rangle=\delta\left(x^{\prime}-x\right)
$$

DVQC: Gate-based universal quantum computers

- Mathematical model

$$
\left|\psi_{\text {out }}\right\rangle=U_{m} \cdot \ldots \cdot U_{1}\left|\psi_{0}\right\rangle
$$

- Hardware realizations with ~ 100 superconducting qubits, e.g., by IBM, Google, Rigetti, Intel, ...

DVQC: Gate-based universal quantum computers

- Mathematical model

$$
\left|\psi_{\text {out }}\right\rangle=U_{m} \cdot \ldots \cdot U_{1}\left|\psi_{0}\right\rangle
$$

- Hardware realizations with ~ 100 superconducting qubits, e.g., by IBM, Google, Rigetti, Intel, ...
- QTRL 4-5 / 9 (expected in 2035)

https://www.fz-juelich.de/ias/jsc/EN/Research/ModellingSimulation/QIP/QTRL/ node.html Copyright: Kristel Michielsen, Thomas Lippert - Forschungszentum Jülich

DVQC: Quantum annealing

- Mathematical model

$$
\left|\psi_{0}\right\rangle=\underset{|\psi\rangle}{\arg \min }\langle\psi| H|\psi\rangle
$$

- Path of Hamiltonians for $t \in[0, T]$
$H(t)=(1-f(t)) H_{I}+f(t) H_{P}$
with easy-to-compute ground state $\left|\psi_{0}\right\rangle$ for the initial Hamiltonian H_{I}
- Ground-state evolution

DVQC: Quantum annealing

- Mathematical model

$$
\left|\psi_{0}\right\rangle=\underset{\mid 1, \omega)}{\arg \min }\langle\psi| H|\psi\rangle
$$

- Hardware realizations by D-Wave with up to 5000 qubits
- QTRL 8-9

https://www.fz-juelich.de/ias/jsc/EN/Research/ModellingSimulation/QIP/QTRL/ node.html Copyright: Kristel Michielsen, Thomas Lippert - Forschungszentum Jülich

CVQC

- Hardware realizations by Xanadu (photonic), concepts for trapped ions [Maslennikov et al. 2019]
- Comprehensive introduction by S. Buck et al. (2021)
- Quantum search by A.K. Pati et al. (2020) and D. Su et al. (2018)

Different interpretations of the word "quantum algorithm"

- Theoretical analysis of an algorithm - HHL paper (2008) claims exponential speedup for "solving" $A x=b$ under conditions on the matrix A
- Application-specific theoretical analysis - Montanaro et al. (2016) shows that no exponential speedup for P_{k}-FEM can be achieved for fixed dimension
- Application-specific circuit + cost estimation - Cao et al. (2013) present textbook quantum circuits for solving Poisson's equation with FDM
- Execution of application-specific circuit on QVM - Wang et al. (2020) demonstrate a fast Poisson solver on Sunway TaihuLight (yes, it works :)
- Execution of application-specific circuit on QPU - Morrell et al. (2021) show that solving a 2×2 system on IBM-Q fails due to noise (doesn't work (-3)

What should we aim for?

M. Troyer: super-quadratic speedup is a must because

- operations will be 10-12 orders of magnitude slower
- I/O will be 10.000x slower

NISQ future QCs

Quantum algorithms for solving PDEs

Inspired by A. Pesah's report "Quantum Algorithms for Solving Partial Differential Equations" 2020.

Quantum algorithms for solving PDEs

Inspired by A. Pesah's report "Quantum Algorithms for Solving Partial Differential Equations" 2020.

Schrödinger's equation

Given: $\dot{x}=A x, x\left(t_{0}\right)=x_{0}$

- Von Neumann measurement [von Neumann 1932, Childs et al. 2002]

$$
\left(\begin{array}{cc}
0 & i A^{\dagger} \\
-i A & 0
\end{array}\right) \Rightarrow H=i A^{\dagger} \otimes|0\rangle_{P}\langle 1|-i A \otimes|1\rangle_{P}\langle 0|
$$

- State after Hamiltonian simulation [Leyton, Osborne 2008]

$$
|\Psi\rangle=e^{i H t}|\psi\rangle|0\rangle_{P}=\sum_{k=0}^{\infty} \frac{(i H t)^{k}}{k!}|\psi\rangle|0\rangle_{P}=|\psi\rangle|0\rangle_{P}+t A|\psi\rangle|1\rangle_{P}-\cdots
$$

- Post-selection on "1" after measurement on the ancillary qubit
- Procedure from [HHL 2008] to correct for first-order truncation
- Caveat: success probability $\frac{1}{2} t^{2}$ (roughly $16 / t^{2}$ 'fresh' states $|\psi\rangle$ needed)

Schrödinger's equation

Given: $\dot{x}=A x, x\left(t_{0}\right)=x_{0}$

- Matrix decomposition $A=A_{H}+A_{A}$
- Baker-Campbell-Hausdorff formula

$$
e^{i A t}=e^{i A_{H} t} \cdot e^{i A_{A} t}, \quad \text { if }\left[A_{H}, A_{A}\right]=0
$$

- Hamiltonian simulation of A_{H} and A_{A} via unitary dilation of $\hat{O}=e^{i A_{A} t}$

$$
\left(\begin{array}{cc}
\hat{O} & \sqrt{1-\hat{o}^{2}} \\
\sqrt{1-\hat{o}^{2}} & -\hat{O}
\end{array}\right)|\psi\rangle|0\rangle=\hat{O}|\psi\rangle|0\rangle+\sqrt{1-\hat{o}^{2}}|\psi\rangle|1\rangle
$$

- Black-Scholes equation [Gonzalez-Conde et al. 2021]

$$
f_{t}=a f+b f_{x}-c f_{x x}=\left(i b\left(-i \partial_{x}\right)+a I+c\left(-i \partial_{x}\right)^{2}\right) f
$$

- Caveat: exponential scaling in t if $\left[A_{H}, A_{A}\right] \neq 0$ [Berry 2014]

Given: $\dot{x}=A x, x\left(t_{0}\right)=x_{0}$

- Derivative of Schrödinger's equation [Costa et al. 2019]

$$
\psi_{t t}=-H^{2} \psi
$$

- Hermitian matrix

$$
H=\left(\begin{array}{cc}
0 & B \\
B^{\dagger} & 0
\end{array}\right) \Rightarrow H^{2}=\left(\begin{array}{cc}
B B^{\dagger} & 0 \\
0 & B^{\dagger} B
\end{array}\right)
$$

- Wave equation

$$
\partial_{t t} f=-\Delta f \approx A f \Rightarrow \text { find } A=B B^{\dagger}
$$

- Example: graph Laplacian

$$
B_{e v}=\left\{\begin{array}{cc}
1 & e=(v, w), v<w \\
-1 & e=(v, w), v>w \\
0 & \text { otherwise }
\end{array} \Rightarrow B_{e v}=\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & \ddots & \ddots & 0 \\
0 & 0 & 1 & -1
\end{array}\right)\right.
$$

Quantum algorithms for solving PDEs

Inspired by A. Pesah's report "Quantum Algorithms for Solving Partial Differential Equations" 2020.

Hamiltonian simulation

Hamiltonian simulation (approach \#1)

- Given: Hamiltonian $H\left(2^{n} \times 2^{n}\right.$ Hermitian on n qubits), time t, and error ϵ
- Goal: find an algorithm to approximate U such that $\left\|U-e^{i H t}\right\| \leq \epsilon$
- Decomposition into local Hamiltonianc II Invd 19061

$$
H=\sum_{\ell=1}^{L} \sqrt{H_{\ell}}, \quad\left(e^{A \frac{t}{r}} e^{B \frac{t}{r}}\right)^{r}=e^{(A+B) t+\frac{1}{2}[A, B] \frac{t^{2}}{r}+O\left(\frac{t^{3}}{r^{2}}\right)}
$$

- Suzuki-Trotter decomposition [Suzuki 1991]

$$
e^{-i H t} \approx\left(\prod_{\ell=1}^{L} e^{-i H_{\ell} \frac{t}{r}}\right)^{r}, \quad r \gg 1
$$

Hamiltonian simulation (approach \#2)

- Given: Hamiltonian $H\left(2^{n} \times 2^{n}\right.$ Hermitian on n qubits), time t, and error ϵ
- Goal: find an algorithm to approximate U such that $\left\|U-e^{i H t}\right\| \leq \epsilon$
- Truncated Taylor expansion

$$
\mathrm{e}^{i H t}=I-i H t-\frac{1}{2} H^{2} t^{2}+\frac{i}{6} H^{3} t^{3}+\cdots
$$

- Linear combination of unitary operators [Berry et al. 2015]

$$
H=\sum_{\ell} \alpha_{\ell} H_{\ell} \Rightarrow H^{n}=\sum_{\ell_{1}, \ldots, \ell_{n}} \alpha_{\ell_{1}} \ldots \alpha_{\ell_{k}} H_{\ell_{1}} \ldots H_{\ell_{n}}
$$

Hamiltonian simulation (complexity)

$$
|\psi\rangle=e^{-i H t}\left|\psi_{0}\right\rangle
$$

Gate complexity [1]

Query complexity [2]-[5]

1st_order Trotter	$\mathcal{O}\left(t^{2} / \epsilon\right)$	$\mathcal{O}\left(s^{3} t(s t / \epsilon)^{\frac{k}{2}}\right)$						
Taylor expansion	$\mathcal{O}\left(\frac{t \log ^{2}(t / \epsilon)}{\log \log t / \epsilon}\right)$	$\mathcal{O}\left(\frac{s^{2}\\|H\\|_{\max } \log s^{2}\\|H\\|_{\max } / \epsilon}{\log \log s^{2}\\|H\\|_{\max } / \epsilon}\right)$						
Quantum walk	$\mathcal{O}(t / \sqrt{\epsilon}$	$\mathcal{O}\left(s\\|H\\|_{\max } t / \sqrt{\epsilon}\right)$						
Quantum signal processing	$\mathcal{O}(t+\log 1 / \epsilon)$	$\mathcal{O}\left(s t\\|H\\|_{\max }+\frac{\log 1 / \epsilon}{\log \log 1 / \epsilon}\right)$						

[1] Childs 2017, [2] Kothari 2017, [3] Berry 2015, [4] Berry 2015, [5] Low 2017

Leyton and Osborne 2008

- First-order systems of the form

$$
\dot{\boldsymbol{x}}(t)=\left(\begin{array}{c}
f_{1}(\boldsymbol{x}) \\
\vdots \\
f_{N}(\boldsymbol{x})
\end{array}\right), \quad f_{j}(\boldsymbol{x})=\sum_{k, l=1}^{N} a_{k l}^{(j)} x_{k} x_{l}, \quad \sum_{j=1}^{N}\left|x_{j}\right|^{2}=1
$$

- Example: Orszag-McLaughlin dynamical system

$$
\dot{x}_{j}=x_{j+1} x_{j+2}+x_{j-1} x_{j-2}-2 x_{j+1} x_{j-1}, \quad j=1, \ldots N
$$

- $\left|a_{i j}\right|=\mathcal{O}(1)$ and A is s-sparse, i.e., each f_{j} involves at most $s / 2$ monomials and each variable x_{j} appears in at most $s / 2$ polynomials f_{j}
- Lipschitz constant: $\|F(\boldsymbol{x}-\boldsymbol{y})\| \leq \mathcal{O}(1) \cdot\|x-y\|$ in ball $\|x\| \leq 1,\|y\| \leq 1$
- We assume that the initial state can be prepared efficiently

Leyton and Osborne 2008

Schrödinger's equation
Hamiltonian simulation Hamiltonian simulation
$|\psi\rangle=e^{-i H t}\left|\psi_{0}\right\rangle$ $\psi_{t}=-i H \psi$ M

- Explicit Euler method

$$
\left|\psi^{\prime}\right\rangle=e^{i H \Delta t}|\psi\rangle|0\rangle \quad \Rightarrow \quad|\psi(t+\Delta t)\rangle=|\psi(t)\rangle+\Delta t A|\psi(t)\rangle
$$

- Success probability of a single step $\frac{1}{2} \Delta t^{2} ; 16 / \Delta t^{2}$ 'fresh' $|\psi\rangle$ needed
- Temporal scaling $\left(\frac{16}{\Delta t^{2}}\right)^{m}$, spatial scaling $\left(\frac{16}{\Delta t^{2}}\right)^{m} \log N$ for m steps
- Hamiltonian simulation must be performed with error $\delta<(3 \mathcal{O}(1))^{-m}$ to ensure that the m-th iterate is exponentially close to the desired state

QuDiffEq

- Quantum algorithms for linear and nonlinear differential equations
- Papers with Code
- [Leyton, Osborne 2008]
- [Berry et al. 2010]
- [Xin et al. 2018]

Gonzalez-Conde et al. 2022

Black-Scholes equation for European put options

Precision comparable to classical methods with 10 qubits and 94 entangling gates on fault-tolerant QC. Complexity $\mathcal{O}($ poly $n)$. Success probability 0.6 .

Suau et al. 2022

Wave equations

Quantum algorithms for solving PDEs

Inspired by A. Pesah's report "Quantum Algorithms for Solving Partial Differential Equations" 2020.

linear system

Given: $\dot{x}=A x+b, x\left(t_{0}\right)=x_{0}$

$O(\operatorname{poly}(1 / \epsilon))$

- Unroll Euler method in time

$$
\left(\begin{array}{cccc}
I & 0 & 0 & 0 \\
-(I+\Delta t A) & I & 0 & 0 \\
\ddots & \ddots & \ddots & \ddots \\
0 & 0 & -(I+\Delta t A) & I
\end{array}\right)\left(\begin{array}{c}
x_{0} \\
x_{1} \\
\vdots \\
x_{m}
\end{array}\right)=\left(\begin{array}{c}
x_{i n} \\
\Delta t b \\
\vdots \\
\Delta t b
\end{array}\right)
$$

- Apply HHL-type algorithm to obtain the solution at all times

$$
|x\rangle=\sum_{j=0}^{m}\left|t_{j}\right\rangle\left|x_{j}\right\rangle
$$

- Application and analysis for the heat equation yields poor scaling with precision [Linden et al. 2020] even with the improved variant of the QLSA 'solver' [Berry et al. 2017]

linear system

Solution: $x(t)=e^{A t} x_{0}+\left(e^{A t}-I\right) A^{-1} b$

$\mathcal{O}($ poly $\log (1 / \epsilon))$

- Truncated exponentials

$$
e^{z} \approx \sum_{j=0}^{k} \frac{z^{j}}{j!}, \quad\left(e^{z}-1\right) z^{-1} \approx \sum_{j=1}^{k} \frac{z^{j-1}}{j!}
$$

- Linear system [Berry et al. 2017]

$$
C_{m, k, p}(\Delta t A)|x\rangle=|0\rangle\left|x_{0}\right\rangle+\Delta t \sum_{j=0}^{m-1}|j(k+1)+1\rangle|b\rangle
$$

$$
\left(\begin{array}{ccccccccccc}
I & & & & & & & & & & \\
-\Delta t A & I & & & & & & & & & \\
& -\Delta t A / 2 & I & & & & & & & & \\
& & -\Delta t A / 3 & I & & & & & & & \\
-I & -I & -I & -I & I & & & & & & \\
& & & & -\Delta t A & I & & & \\
& & & & & -\Delta t A / 2 & I & & & & \\
& & & & & & -\Delta t A / 3 & I & & & \\
& & & & -I & -I & -I & -I & I & & \\
& & & & & & & & -I & I & \\
& & & & & & & & & -I & I
\end{array}\right)_{2,3,2} \quad\left(\begin{array}{c}
\left|x_{0}\right\rangle \\
\Delta 0|b\rangle \\
0 \\
0 \\
0 \\
\Delta t|b\rangle \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

Given: $\dot{x}=A(t) x+b(t), x\left(t_{0}\right)=x_{0}$

$\mathcal{O}($ poly $\log (1 / \epsilon))$

- Chebyshev pseudo-spectral approximation

$$
x(t)=\sum_{k=0}^{n} c_{k} T_{k}(t) \Rightarrow \dot{x}\left(t_{l}\right)=A\left(t_{l}\right) x\left(t_{l}\right)+b\left(t_{l}\right), \quad t_{l}=\cos \frac{l \pi}{n}
$$

- Rescaled differential equation (Childs and Liu 2020)

$$
\dot{x}(\gamma(t))=-\frac{t^{n+1}-t^{n}}{2}[A(\gamma(t)) x(\gamma(t))+b(\gamma(t))]
$$

where $\gamma:\left[t^{n}, t^{n+1}\right] \mapsto[-1,1]$ is defined as $\gamma: t \mapsto 1-\frac{2\left(t-t^{n}\right)}{t^{n+1}-t^{n}}$

- Combined with the $C_{m, k, p}$-approach from [Berry et al. 2017] this extends their work to ODEs with time-dependent coefficient matrices and vectors

Quantum algorithms for solving PDEs

Inspired by A. Pesah's report "Quantum Algorithms for Solving Partial Differential Equations" 2020.

Quantum linear 'solver' algorithm

- Original HHL algorithm [Harrow et al. 2008]
- Improved versions of HHL
- VTAA [Ambainis 2010]
- AQC [Subasi et al. 2019]

$$
\mathcal{O}\left(s^{2} \kappa \log ^{3} \kappa \log (N) / \epsilon^{3}\right)
$$

$$
\mathcal{O}\left(\kappa^{2} \log (\kappa) / \epsilon\right)
$$

- AQC [An and Lin 2019]
- QLSA w/o phase estimation [Childs et al. 2017]
- Dense matrices [Wossnig et al. 2018]
$\mathcal{O}(\kappa$ poly $\log (\kappa / \epsilon))$
$\mathcal{O}($ poly $\log (1 / \epsilon))$
$\mathcal{O}\left(\kappa^{2} \sqrt{N}\right.$ poly $\left.\log (N) / \epsilon\right)$

Original HHL algorithm

QLSA

Figure 1 from [Morrell and Wong 2021]

State preparation: $\left|\psi_{\text {init }}\right\rangle=U_{\text {prep }}|0\rangle$

- General states cannot be prepared efficiently, not even approximated

$$
N \text { grid points } \Rightarrow n=\log N \text { qubits } \Rightarrow\left|U_{\text {prep }}\right|=\mathcal{O}(N)
$$

uniformly controlled rotations [Mottonen et al. 2004] using $\mathcal{O}\left(2^{n}\right)$ gates

- Certain states of the form $|\psi\rangle=\sum_{i} \sqrt{p_{i}}|i\rangle$ can be prepared efficiently, e.g., using quantum GANs [Zoufal et al. 2019] using \mathcal{O} (poly n) gates
- Reducing time complexity by adding ancillary qubits
- Low-depth approach: $\mathcal{O}\left(n^{2}\right)$ using $\mathcal{O}\left(2^{n^{2}}\right)$ ancillae [Zhang et al. 2021]
- s-sparse states: $\Theta(\log n s)$ using $\mathcal{O}(n s \log s)$ ancillae [Zhang et al. 2022]

Does any of this work in practice?

- QLSA for $A x=b$
- HW-realization for 2×2 matrix [Cai et al. 2013], [Barz et al. 2013], [Pan et al. 2013], and 8×8 matrix [Wen et al. 2018]
- $2 \times 2,4 \times 4$, and 8×8 on IBM, Rigetti, IonQ [Cornelissen et al. 2021]
- Other authors report that "due to imperfection and noise in a real quantum computer [ibmq_santiago], the hardware execution of the same circuit does not give satisfactory results" [Morrell and Wong 2021]
- Okay, so no chance for solving ODEs / transient PDEs with QC in near term
- How about solving Poisson’s equation discretized by FDM / FEM?
- General state preparation is exponentially expensive, i.e., $\mathcal{O}(N)$
- Polynomials/functions with local support can be prepared efficiently
- $\kappa=\mathcal{O}\left(N^{d / 2}\right)$ in standard FEM \Rightarrow no exponential speedup
- Quantum-SPAI precondioner, i.e. $P A x=P b$ [Clader et al. 2013]
- $\mathcal{O}\left(s^{2}\right)$ queries to $P A$-oracle; $\mathcal{O}\left(s^{3}\right)$ runtime
- $\kappa=\mathcal{O}(1)$ or $\kappa=\mathcal{O}(\log N)$
- $s=$?
- $1 / \epsilon=\mathcal{O}(N)$ in most discretization schemes \Rightarrow no exponential speedup

No exponential speedup for elliptic problems for fixed d

algorithm	w/o preconditioner	optimal preconditioner				
Conjugate Gradients	$\tilde{\mathcal{O}}\left(\left(\frac{\|x\|_{2}}{\epsilon}\right)^{\frac{d+1}{2}}\right)$	$\tilde{\mathcal{O}}\left(\left(\frac{\|x\|_{2}}{\epsilon}\right)^{\frac{d}{2}}\right)$				
Childs et al. 2017	$\tilde{\mathcal{O}}\left(\left(\frac{\\|x\\|_{1}\|x\|_{2}^{2}}{\epsilon^{3}}\right)\right)$	$\tilde{\mathcal{O}}\left(\frac{\\|x\\|_{1}}{\epsilon}\right)$				

\tilde{\mathcal{O}}(h(n))=\mathcal{O}\left(h(n) \log ^{k} n\right)
\]

- State preparation +q -SPAI preconditioner +PA -oracle in $\mathcal{O}(\log (1 / \epsilon))$
- To distinguish between two ϵ-close states requires $\mathcal{O}(\sqrt{1 / \epsilon})$ queries

Quantum algorithms for solving PDEs

Inspired by A. Pesah's report "Quantum Algorithms for Solving Partial Differential Equations" 2020.

Quantum algorithms for solving PDEs

Inspired by A. Pesah's report "Quantum Algorithms for Solving Partial Differential Equations" 2020.

Variational quantum algorithms

[Cerezo et al. 2020]

$$
|\psi(\Theta)\rangle=V(\Theta)|0\rangle
$$

Classical optimizer $\Theta=\min _{\Theta} C(\Theta)$

Variational quantum linear solver [Bravo-Prieto et al. 2020]

- Efficient(!) decomposition into unitaries + efficient(!) state preparation

$$
A=\sum_{k} \alpha_{k} A_{k}, \quad|b\rangle=B|0\rangle
$$

- Cost function

$$
\left.\begin{array}{rlll}
|\Phi\rangle \perp|b\rangle & \Rightarrow & C(\Theta) & \text { large } \\
|\Phi\rangle \||b\rangle & \Rightarrow & C(\Theta) & \text { small }
\end{array}\right\} \quad|\Phi\rangle=A|\psi(\Theta)\rangle
$$

- Ground-state Hamiltonian

$$
H=A^{\dagger}(\mathbb{I}-|b\rangle\langle b|) A
$$

- Cost function

$$
C(\Theta)=\langle\psi(\Theta)| H|\psi(\Theta)\rangle=\langle\Phi \mid \Phi\rangle-\langle\Phi \mid b\rangle\langle b \mid \Phi\rangle
$$

Variational quantum linear solver [Bravo-Prieto et al. 2020]

- Efficient(!) decomposition into unitaries + efficient(!) state preparation

$$
A=\sum_{k} \alpha_{k} A_{k}, \quad|b\rangle=B|0\rangle
$$

- Cost function

$$
\left.\begin{array}{rlll}
|\Phi\rangle \perp|b\rangle & \Rightarrow & C(\Theta) & \text { large } \\
|\Phi\rangle \||b\rangle & \Rightarrow & C(\Theta) & \text { small }
\end{array}\right\} \quad|\Phi\rangle=A|\psi(\Theta)\rangle
$$

- Ground-state Hamiltonian

$$
H=A^{\dagger}(\mathbb{I}-|b\rangle\langle b|) A
$$

- Normalized cost function

$$
\hat{C}(\Theta)=1-\frac{|\langle\Phi \mid b\rangle|^{2}}{\langle\Phi \mid \Phi\rangle}
$$

Variational quantum linear solver [Bravo-Prieto et al. 2020]

- Towards an implementable cost function

$$
\begin{aligned}
& \langle\Phi \mid \Phi\rangle=\sum_{k, l} c_{k}^{*} c_{l}\langle 0| V^{\dagger}(\Theta) A_{k}^{\dagger} A_{l} V(\Theta)|0\rangle \\
& \langle\Phi \mid b\rangle=\sum_{k, l} c_{k}^{*} c_{l}\langle 0| B^{\dagger} A_{l} V(\Theta)|0\rangle\langle 0| B^{\dagger} A_{k} V(\Theta)|0\rangle
\end{aligned}
$$

- [Liu et al. 2021]:
- Decomposition of the d-dimensional Poisson matrix (FDM) into $\mathcal{O}(\log N)$ terms consisting of identities and $1 / 2$ spin operators $|1\rangle\langle 0|$ and $|0\rangle\langle 1|$
- Difficulties to convergence the classical optimizer for 50-100 qubits
- Fully connected measurement circuits

Quantum algorithms for solving PDEs

Inspired by A. Pesah's report "Quantum Algorithms for Solving Partial Differential Equations" 2020.

Summary and recommendations

- ODEs / transient PDEs (long term)
- 'smart' time integrators that reduce the condition number (QLSA)
- Steady-state PDEs (near to mid term)
- 'smart' discretization that reduce the condition number (QLSA)
- problems that admit efficient matrix decompositions (V-QLSA)
- Service to QC
- improve VQAs using classical CSE techniques

