The Future is Analog, maybe Matthias Möller, Delft University of Technology, NL

1852-1926

Gaudi's hanging chain model

Gaudi's hanging chain model

I ♥ analog computing

I v numerics

I v numerics Can I solve my problems by analog computing?

. .

Let's try to solve an ODE ...

$\dot{\mathbf{x}}(t) = \mathbf{b} - \mathbf{a} \cdot \mathbf{x}(t)$ $x(0) = x_0$

... with an analog integrator

$$\dot{x}(t) = \mathbf{b} - \mathbf{a} \cdot \mathbf{x}(t)$$
$$\mathbf{x}(0) = \mathbf{x}_0$$

How about linear systems?

How about linear systems?

$\dot{X}(t) = B - A \cdot X(t)$ $X(0) = X_0$

Et voilà!

$1 x_1 - 2 x_2 = 1$ $-2 x_1 + 1 x_2 = -1$

 $x_1 = \frac{1}{3}$ $x_2 = -\frac{1}{3}$

Now try it in practice!

$1 x_1 - 2 x_2 = 1$ $-2 x_1 + 1 x_2 = -1$

 $x_1 = \frac{1}{3}$ $x_2 = -\frac{1}{3}$

Now try it in practice!

$1 x_1 - 2 x_2 = 1$ $-2 x_1 + 1 x_2 = -1$

 $x_1 = \frac{1}{3}$ $x_2 = -\frac{1}{3}$

Now try it in practice!

Better simulate it!

Better simulate it!

Convergence may take some time!

Convergence may take some time!

I know!

16 unknowns

Finite differences

32 unknowns

64 unknowns

Finite differences

128 unknowns

It all boils down to:

- Diagonal matrix entries $a_{ii} = i i \pi^2 \int \cos^2(i\pi x) dx$
 - Vector entries $b_i = \int \sin(i\pi x) f(x) dx$
 - Solution
 - $u(x) = \sum_{j} u_{j} \sin(j\pi x)$

It all boils down to:

- Diagonal matrix entries $a_{ii} = i i \pi^2 \int \cos^2(i\pi x) dx$
 - Vector entries $b_i = \int \sin(i\pi x) f(x) dx$
 - Solution
 - $u(x) = \sum_{j} u_{j} \sin(j\pi x)$

Function integrator

SPECFEM1D_Analog

But wait, we can use a scope

•						Sco	ре						
То	ols	ols View		Simulation		Help	Help					1	ч
	0	₽	۲	÷	- 🔍	• 🔹	- 🖌	(Jul)					
													Ŧ
	_							_					
	0.1		0.2	0	.3	0.4 ().5	0.6	0.	.7 0	.8 0	.9 1	
									Sample	e based	Offset=0	T=0.000	

But wait, we can use a scope

•						Sco	ре						
То	ols	ols View		Simulation		Help	Help					1	ч
	0	₽	۲	÷	- 🔍	• 🔹	- 🖌	(Jul)					
													Ŧ
	_							_					
	0.1		0.2	0	.3	0.4 ().5	0.6	0.	.7 0	.8 0	.9 1	
									Sample	e based	Offset=0	T=0.000	

MANALAB[©] on sale soon

The Future is Analog!

The Future is Analog!

Thanks for your attention and keep soldering.

