The Future is Analog, maybe

Matthias Möller, Delft University of Technology, NL

Antoni Gaudi

1852-1926

1852-1926

Gaudi's hanging chain model

Gaudi's hanging chain model

I \vee numerics

I \triangleright numerics

Can I solve my problems by analog computing?

Let's try to solve an ODE ...

$$
\begin{gathered}
\dot{x}(\mathrm{t})=\mathrm{b}-\mathrm{a} \cdot \mathrm{x}(\mathrm{t}) \\
\mathrm{x}(0)=\mathrm{x}_{0}
\end{gathered}
$$

... with an analog integrator

... with an analog integrator

How about linear systems?

$$
A \cdot X=B
$$

How about linear systems?

$$
\begin{gathered}
\dot{X}(\mathrm{t})=\mathrm{B}-\mathrm{A} \cdot \mathrm{X}(\mathrm{t}) \\
\mathrm{X}(0)=\mathrm{X}_{0}
\end{gathered}
$$

Et voilà!

Now try it in practice!

$$
\begin{array}{r}
1 x_{1}-2 x_{2}=1 \\
-2 x_{1}+1 x_{2}=-1 \\
x_{1}=1 / 3 \quad x_{2}=-1 / 3
\end{array}
$$

Now try it in practice!

$$
\begin{array}{r}
1 x_{1}-2 x_{2}=1 \\
-2 x_{1}+1 x_{2}=-1 \\
x_{1}=1 / 3 \quad x_{2}=-1 / 3
\end{array}
$$

Now try it in practice!

$$
\begin{array}{r}
1 x_{1}-2 x_{2}=1 \\
-2 x_{1}+1 x_{2}=-1 \\
x_{1}=1 / 3 \quad x_{2}=-1 / 3
\end{array}
$$

Better simulate it!

Better simulate it!

Convergence may take some time!

Convergence may take some time!

I know!
$-u "(x)=f(x)$

Finite differences

16 unknowns

32 unknowns

Finite differences

64 unknowns

128 unknowns
$-u "(x)=f(x)$

$-u "(x)=f(x)$

Let's do spectral finite elements!

It all boils down to:

Diagonal matrix entries

$$
\mathrm{a}_{\mathrm{ii}}=\mathrm{i} \mathrm{i} \pi^{2} \int \cos ^{2}(\mathrm{i} \pi \mathrm{x}) \mathrm{dx}
$$

Vector entries

$$
b_{i}=\int \sin (i \pi x) f(x) d x
$$

Solution
$u(x)=\sum_{j} u_{j} \sin (j \pi x)$

It all boils down to:

Diagonal matrix entries

$$
a_{\mathrm{ii}}=\mathrm{i} i \pi^{2} \int \cos ^{2}(\mathrm{i} \pi x) d x
$$

Vector entries

$$
b_{i}=\int \sin (i \pi x) f(x) d x
$$

Solution

$$
\mathrm{u}(\mathrm{x})=\sum_{\mathrm{j}} \mathrm{u}_{\mathrm{j}} \sin (\mathrm{j} \pi \mathrm{x})
$$

Function integrator

SPECFEM1D_Analog

But wait, we can use a scope

But wait, we can use a scope

ANALAB® on sale soon

ANALAB ${ }^{\oplus}$ on sale soon

Thanks for your attention and keep soldering.

