Efficient solution techniques for isogeometric analysis

Matthias Möller

Department of Applied Mathematics
Delft University of Technology, NL

SFB 1313 Lecture Series
22-02-2022

About me

- Associate Professor of Numerical Analysis at DIAM/TU Delft
- PhD and PostDoc at the Chair of Applied Mathematics and Numerics/TU Dortmund

Research interests

- Finite element and isogeometric analysis
- Adaptive high-resolution schemes for flow problems
- Fast solution techniques for (non-)linear problems
- High-performance and quantum-accelerated computing
- Scientific machine learning

About me

- Associate Professor of Numerical Analysis at DIAM/TU Delft
- PhD and PostDoc at the Chair of Applied Mathematics and Numerics/TU Dortmund

Research interests

- Finite element and isogeometric analysis
- Adaptive high-resolution schemes for flow problems
- Fast solution techniques for (non-)linear problems
- High-performance and quantum-accelerated computing
- Scientific machine learning
\Rightarrow MS-12: Scientific machine learning in computational mechanics 9th GACM Colloquium on Computational Mechanics in Essen, September 21-23, 2022

The IGA team

Roel Tielen (ASML)

Hugo Verhelst (TUD) Andrzej Jaeschke (Łódź)

Collaborations

Göddeke (U Stuttgart), Elgeti/Helmig (RWTH Aachen, TU Vienna), Mantzaflaris (INRIA), Gauger (TU K'lautern), Jüttler (JKU), Simeon (TU K'lautern), ...

Funding

EU-H2020 MOTOR (GA 678727), NWO FlexFloat starting 2022 (\Rightarrow will open soon)

Isogeometric Analysis

Ted Blacker, Sandia National Laboratories

My personal 'top 3 features' of IGA

(1) Unified mathematical approach towards geometry modelling and PDE analysis

$$
\begin{aligned}
& \mathbf{x}(\xi, \eta)=\sum_{i, j} \mathbf{x}_{i, j} N_{i}^{p}(\xi) N_{j}^{q}(\eta) \\
& u(\xi, \eta)=\sum_{i, j} u_{i, j} N_{i}^{p}(\xi) N_{j}^{q}(\eta)
\end{aligned}
$$

with B-spline basis functions N_{i}^{p} of order p.

- PoU, local support, non-negative
- Geometry-preserving refinement

- Generic extension to high order
- Operations can be expressed at SpMVs

My personal 'top 3 features' of IGA

(2) 'Meshing' + design optimization becomes one global optimization problem

J.P. Hinz, A. Jaeschke, M. Möller, C. Vuik (2021). The role of PDE-based parameterization techniques in gradient-based IGA shape optimization applications. CMAME 378, 113685.

My personal 'top 3 features' of IGA

(3) C^{p-1}-continuity enables direct simulation of higher-order PDEs

H.M. Verhelst, https://github.com/gismo/gsKLShell (v22.1)

My personal 'top 3 features' of IGA

(3) C^{p-1}-continuity enables direct simulation of higher-order PDEs

H.M. Verhelst, M. Möller, J.H. Den Besten, A. Mantzaflaris, M.L. Kaminski (2021). Stretch-based hyperelastic material formulations for isogeometric Kirchhoff-Love shells with application to wrinkling. Computer-Aided Design, 139, 103075.

My personal 'top 3 features' of IGA

(3) C^{p-1}-continuity enables higher-order material point method

Left: Stomakhin et al. (2013). A material point method for snow simulation. ACM Trans. Graph. 32. Right: E. Wobbes, R. Tielen, M. Möller, C. Vuik (2021). Comparison and unification of material-point and optimal transportation meshfree methods. Computational Particle Mechanics, 8, 113-133.

But ...

IGA also has its challenges

- automatic BRep-CAD-to-VRep-analysis workflows (we really don't care)
- efficient $C^{>0}$ multi-patch coupling (Delft, Linz, ...)
- efficient assembly of linear and multi-linear forms (INRIA, Pavia, ...)
- efficient solution of linear systems of equations (Delft, Linz, ...)

State of the art in IGA solvers

State of the art in IGA solvers

Direct solvers

- Performance study [Collier et al. 2012]
- Refined IGA [Garcia et al. 2018]

State of the art in IGA solvers

Direct solvers

- Performance study [Collier et al. 2012]
- Refined IGA [Garcia et al. 2018]

Preconditioning techniques

- Schwarz methods [da Veiga et al. 2012 \& 2013]
- Sylvester equation [Sangalli \& Tani 2016]
- Nonsymmetric systems [Tani 2017]
- BPX [Cho \& Vásquez 2018]
- Fast diagonalization [Montardini et al. 2019]
- Space-time IGA [Hofer et al. 2019]
- Schwarz methods [Cho 2020]
- Directional splitting [Calo et al. 2021]
- Kronecker product [Loli et al. 2021]

State of the art in IGA solvers

Direct solvers

- Performance study [Collier et al. 2012]
- Refined IGA [Garcia et al. 2018]

Preconditioning techniques

- Schwarz methods [da Veiga et al. 2012 \& 2013]
- Sylvester equation [Sangalli \& Tani 2016]
- Nonsymmetric systems [Tani 2017]
- BPX [Cho \& Vásquez 2018]
- Fast diagonalization [Montardini et al. 2019]
- Space-time IGA [Hofer et al. 2019]
- Schwarz methods [Cho 2020]
- Directional splitting [Calo et al. 2021]
- Kronecker product [Loli et al. 2021]

h-multigrid techniques

- Full multigrid [Hofreither 2016]
- THB-splines [Hofreither et al. 2017]
- Symbol-based [Donatelli 2017]
- Boundary correction [Hofreither et al. 2017]
- Subspace corrected mass smoother [Takacs 2017]
- Multiplicative Schwarz smoother [de la Riva 2018]
- Biharmonic equation [Sogn et al. 2019]
- Immersed IGA [de Prenter et al. 2020]
- Bilaplacian equation [de la Riva et al. 2020]
- (Non-)conforming multipatch [Takacs 2020]

State of the art in IGA solvers

Direct solvers

- Performance study [Collier et al. 2012]
- Refined IGA [Garcia et al. 2018]

Preconditioning techniques

- Schwarz methods [da Veiga et al. 2012 \& 2013]
- Sylvester equation [Sangalli \& Tani 2016]
- Nonsymmetric systems [Tani 2017]
- BPX [Cho \& Vásquez 2018]
- Fast diagonalization [Montardini et al. 2019]
- Space-time IGA [Hofer et al. 2019]
- Schwarz methods [Cho 2020]
- Directional splitting [Calo et al. 2021]
- Kronecker product [Loli et al. 2021]

p-multigrid techniques

- (Block-)ILUT smoother [Tielen et al. 2018, 2020]
- Multiplicative Schwarz smoother [de la Riva 2020]

h-multigrid techniques

- Full multigrid [Hofreither 2016]
- THB-splines [Hofreither et al. 2017]
- Symbol-based [Donatelli 2017]
- Boundary correction [Hofreither et al. 2017]
- Subspace corrected mass smoother [Takacs 2017]
- Multiplicative Schwarz smoother [de la Riva 2018]
- Biharmonic equation [Sogn et al. 2019]
- Immersed IGA [de Prenter et al. 2020]
- Bilaplacian equation [de la Riva et al. 2020]
- (Non-)conforming multipatch [Takacs 2020]

State of the art in IGA solvers

Direct solvers

- Performance study [Collier et al. 2012]
- Refined IGA [Garcia et al. 2018]

Preconditioning techniques

- Schwarz methods [da Veiga et al. 2012 \& 2013]
- Sylvester equation [Sangalli \& Tani 2016]
- Nonsymmetric systems [Tani 2017]
- BPX [Cho \& Vásquez 2018]
- Fast diagonalization [Montardini et al. 2019]
- Space-time IGA [Hofer et al. 2019]
- Schwarz methods [Cho 2020]
- Directional splitting [Calo et al. 2021]
- Kronecker product [Loli et al. 2021]

p-multigrid techniques

- (Block-)ILUT smoother [Tielen et al. 2018, 2020]
- Multiplicative Schwarz smoother [de la Riva 2020]

h-multigrid techniques

- Full multigrid [Hofreither 2016]
- THB-splines [Hofreither et al. 2017]
- Symbol-based [Donatelli 2017]
- Boundary correction [Hofreither et al. 2017]
- Subspace corrected mass smoother [Takacs 2017]
- Multiplicative Schwarz smoother [de la Riva 2018]
- Biharmonic equation [Sogn et al. 2019]
- Immersed IGA [de Prenter et al. 2020]
- Bilaplacian equation [de la Riva et al. 2020]
- (Non-)conforming multipatch [Takacs 2020]

Transient problems

- Parallel splitting solvers [Puzyrev et al. 2019]
- Space-time solvers [Langer et al 2016]
- Space-time solvers [Loli et al. 2020]
- Space-time least-squares [Montardini et al. 2020]
- MGRIT-IGA [Tielen et al. 2021]

State of the art in IGA solvers

Direct solvers

- Performance study [Collier et al. 2012]
- Refined IGA [Garcia et al. 2018]

Preconditioning techniques

- Schwarz methods [da Veiga et al. 2012 \& 2013]
- Sylvester equation [Sangalli \& Tani 2016]
- Nonsymmetric systems [Tani 2017]
- BPX [Cho \& Vásquez 2018]
- Fast diagonalization [Montardini et al. 2019]
- Space-time IGA [Hofer et al. 2019]
- Schwarz methods [Cho 2020]
- Directional splitting [Calo et al. 2021]
- Kronecker product [Loli et al. 2021]

p-multigrid techniques

- (Block-)ILUT smoother [Tielen et al. 2018, 2020]
- Multiplicative Schwarz smoother [de la Riva 2020]

h-multigrid techniques

- Full multigrid [Hofreither 2016]
- THB-splines [Hofreither et al. 2017]
- Symbol-based [Donatelli 2017]
- Boundary correction [Hofreither et al. 2017]
- Subspace corrected mass smoother [Takacs 2017]
- Multiplicative Schwarz smoother [de la Riva 2018]
- Biharmonic equation [Sogn et al. 2019]
- Immersed IGA [de Prenter et al. 2020]
- Bilaplacian equation [de la Riva et al. 2020]
- (Non-)conforming multipatch [Takacs 2020]

Transient problems

- Parallel splitting solvers [Puzyrev et al. 2019]
- Space-time solvers [Langer et al 2016]
- Space-time solvers [Loli et al. 2020]
- Space-time least-squares [Montardini et al. 2020]
- MGRIT-IGA [Tielen et al. 2021]

Outline

(1) Motivation and problem formulations
(2) Part I: Multigrid methods for IGA

Introduction to h - and p-multigrid
ILUT smoother for single-patch IGA
Block-ILUT smoother for multi-patch IGA
(3) Part II: Multigrid reduction in time (MGRIT) Introduction to MGRIT MGRIT-IGA
(4) Conclusions

Model problems

Part I: Convection-diffusion-reaction equation (CDR-Eq)

$$
\begin{array}{rlrl}
-\nabla \cdot(\mathbb{D} \nabla u(\mathbf{x}))+\mathbf{v} \cdot \nabla u(\mathbf{x})+r u(\mathbf{x}) & =f & \mathbf{x} & \in \Omega \\
u(\mathbf{x}) & =g & \mathbf{x} \in \Gamma
\end{array}
$$

Part II: Heat equation (Heat-Eq)

$$
\begin{aligned}
\partial_{t} u(\mathbf{x}, t)-\kappa \Delta u(\mathbf{x}, t) & =f & & \mathbf{x} \in \Omega, t \in[0, T] \\
u(\mathbf{x}, t) & =g & & \mathbf{x} \in \Gamma, t \in[0, T] \\
u(\mathbf{x}, 0) & =u^{0}(\mathbf{x}) & & \mathbf{x} \in \Omega
\end{aligned}
$$

d-dimensional connected Lipschitz domain $\Omega \subset \mathbb{R}^{d}$, its boundary $\Gamma=\partial \Omega$, load vector $f \in L^{2}(\Omega)$, Dirichlet boundary conditions g, diffusion tensor \mathbb{D} and coefficient κ, resp., divergence-free velocity field \mathbf{v}, source term r, and u^{0} initial conditions

Variational formulation

CDR-Eq: Find $u \in \mathcal{H}_{g}^{1}(\Omega)$ such that

$$
a(w, u)=l(w) \quad \forall w \in \mathcal{H}_{0}^{1}(\Omega)
$$

Heat-Eq: Given $u^{n} \in \mathcal{H}_{g}^{1}(\Omega)$ find $u^{n+1} \in \mathcal{H}_{g}^{1}(\Omega)$ such that

$$
\left\langle w, u^{n+1}\right\rangle+\Delta t k\left(w, u^{n+1}\right)=\left\langle w, u^{n}\right\rangle+l(w) \quad \forall w \in \mathcal{H}_{0}^{1}(\Omega)
$$

Variational formulation

CDR-Eq: Find $u \in \mathcal{H}_{g}^{1}(\Omega)$ such that

$$
a(w, u)=l(w) \quad \forall w \in \mathcal{H}_{0}^{1}(\Omega)
$$

Heat-Eq: Given $u^{n} \in \mathcal{H}_{g}^{1}(\Omega)$ find $u^{n+1} \in \mathcal{H}_{g}^{1}(\Omega)$ such that

$$
\left\langle w, u^{n+1}\right\rangle+\Delta t k\left(w, u^{n+1}\right)=\left\langle w, u^{n}\right\rangle+l(w) \quad \forall w \in \mathcal{H}_{0}^{1}(\Omega)
$$

with (bi-)linear forms defined as

$$
\begin{array}{rlrl}
a(w, u):=\int_{\Omega} \nabla w \cdot(\mathbb{D} \nabla u)+w(\mathbf{v} \cdot \nabla u+r u) \mathrm{d} \mathbf{x} & \langle w, u\rangle:=\int_{\Omega} w u \mathrm{~d} \mathbf{x} \\
k(w, u):=\kappa \int_{\Omega} \nabla u \cdot \nabla u \mathrm{~d} \mathbf{x} & l(w):=\langle w, f\rangle
\end{array}
$$

Algebraic equations

CDR-Eq: Find $u_{h, p} \in \mathcal{V}_{h, p}$ such that

$$
\mathrm{A}_{h, p} \mathrm{u}_{h, p}=\mathrm{f}_{h, p}
$$

Heat-Eq: Find $u_{h, p}^{n+1} \in \mathcal{V}_{h, p}$ such that

$$
\left[\mathrm{M}_{h, p}+\Delta t \mathrm{~K}_{h, p}\right] \mathrm{u}_{h, p}^{n+1}=\mathrm{M}_{h, p} \mathrm{u}_{h, p}^{n}+\mathrm{f}_{h, p}
$$

Algebraic equations

CDR-Eq: Find $u_{h, p} \in \mathcal{V}_{h, p}$ such that

$$
\mathrm{A}_{h, p} \mathrm{u}_{h, p}=\mathrm{f}_{h, p}
$$

Heat-Eq: Find $u_{h, p}^{n+1} \in \mathcal{V}_{h, p}$ such that

$$
\left[\mathrm{M}_{h, p}+\Delta t \mathrm{~K}_{h, p}\right] \mathrm{u}_{h, p}^{n+1}=\mathrm{M}_{h, p} \mathrm{u}_{h, p}^{n}+\mathrm{f}_{h, p}
$$

The unknown solution vector is given by

$$
u_{h, p}^{n}=\sum_{j=1}^{N_{b}} \mathrm{u}_{j}^{n} \varphi_{j}(\mathbf{x}), \quad \text { where } \mathrm{u}_{j}^{n} \text { is the basis coefficient corresponding to } \varphi_{j} \in \mathcal{V}_{h, p}
$$

Algebraic equations

CDR-Eq: Find $u_{h, p} \in \mathcal{V}_{h, p}$ such that

$$
\mathrm{A}_{h, p} \mathrm{u}_{h, p}=\mathrm{f}_{h, p}
$$

Heat-Eq: Find $u_{h, p}^{n+1} \in \mathcal{V}_{h, p}$ such that

$$
\left[\mathrm{M}_{h, p}+\Delta t \mathrm{~K}_{h, p}\right] \mathrm{u}_{h, p}^{n+1}=\mathrm{M}_{h, p} \mathrm{u}_{h, p}^{n}+\mathrm{f}_{h, p}
$$

The unknown solution vector is given by

$$
u_{h, p}^{n}=\sum_{j=1}^{N_{b}} \mathrm{u}_{j}^{n} \varphi_{j}(\mathrm{x}), \quad \text { where } \mathrm{u}_{j}^{n} \text { is the basis coefficient corresponding to } \varphi_{j} \in \mathcal{V}_{h, p}
$$

and the system matrices and right-hand side vector are defined as

$$
\mathrm{A}_{h, p}=\left\{a\left(\varphi_{i}, \varphi_{j}\right)\right\}_{i, j}, \quad \mathrm{~K}_{h, p}=\left\{k\left(\varphi_{i}, \varphi_{j}\right)\right\}_{i, j}, \quad \mathrm{M}_{h, p}=\left\{\left\langle\varphi_{i}, \varphi_{j}\right\rangle\right\}_{i, j}, \quad \mathrm{f}_{h, p}=\left\{l\left(\varphi_{i}\right)\right\}_{i}
$$

Ansatz spaces

FEA: element-wise 'pull-back'

$$
\begin{gathered}
\mathcal{V}_{h, p}=\left\{v \in C^{0}(\bar{\Omega}):\left.v\right|_{T_{k}} \in \mathbb{Q}_{p} \circ F_{k}^{-1}, \forall T_{k} \in \mathcal{T}_{h}\right. \\
\left.\left.v\right|_{\Gamma}=0\right\}
\end{gathered}
$$

with \mathbb{Q}_{p} the space of polynomials of degree p or less

Ansatz spaces

FEA: element-wise 'pull-back'

$$
\begin{gathered}
\mathcal{V}_{h, p}=\left\{v \in C^{0}(\bar{\Omega}):\left.v\right|_{T_{k}} \in \mathbb{Q}_{p} \circ F_{k}^{-1}, \forall T_{k} \in \mathcal{T}_{h}\right. \\
\left.\left.v\right|_{\Gamma}=0\right\}
\end{gathered}
$$

with \mathbb{Q}_{p} the space of polynomials of degree p or less

IGA: patch-wise 'pull-back'

$$
\mathcal{V}_{h, p}=\operatorname{span}\left\{\hat{\varphi}_{j} \circ F_{\ell}^{-1}\right\}
$$

with $\hat{\varphi}_{j}$ the $j^{\text {th }} \mathrm{B}$-spline basis function

Ansatz spaces

FEA: element-wise 'pull-back'

$$
\begin{gathered}
\mathcal{V}_{h, p}=\left\{v \in C^{0}(\bar{\Omega}):\left.v\right|_{T_{k}} \in \mathbb{Q}_{p} \circ F_{k}^{-1}, \forall T_{k} \in \mathcal{T}_{h}\right. \\
\left.\left.v\right|_{\Gamma}=0\right\}
\end{gathered}
$$

with \mathbb{Q}_{p} the space of polynomials of degree p or less

IGA: patch-wise 'pull-back'

$$
\mathcal{V}_{h, p}=\operatorname{span}\left\{\hat{\varphi}_{j} \circ F_{\ell}^{-1}\right\}
$$

with $\hat{\varphi}_{j}$ the $j^{\text {th }} \mathrm{B}$-spline basis function
Think of IGA patches as macro elements

B-spline illustration taken from: H.Nguyen-XuanaLoc et al., DOI: 10.1016/j.tafmec.2014.07.008

Condition number

	SEM-NI	IGA- C^{0}	IGA- C^{p-1}
$\mathcal{K}(M)$	$\sim p^{d}$	$\sim p^{-d / 2} 4^{p d}$	
$\mathcal{K}(K)$	$\sim h^{-2} p^{3}$		

From: P. Gervasio, L. Dedè, O. Chanon, and A. Quarteroni, DOI: 10.1007/s10915-020-01204-1

Sparsity pattern: 2 d single patch, $p=1$

Sparsity pattern: 2d single patch, $p=2$

Sparsity pattern: 2d single patch, $p=3$

Sparsity pattern: 2d multi-patch IGA-C $C^{p-1}, \operatorname{ref}_{h}=3$

Four-patch geometry with C^{0} coupling of conforming degrees of freedom.

Sparsity pattern: 2d multi-patch IGA- $C^{p-1}, \operatorname{ref}_{h}=3$

$$
p=1
$$

$$
p=2
$$

$$
p=3
$$

Four-patch geometry with C^{0} coupling of conforming degrees of freedom.

Sketch of our solution strategy

- Coarsening in p reduces the stencil but not so much the number of unknowns
- p-multigrid with direct projection $\mathcal{V}_{h, p} \searrow \mathcal{V}_{h, 1}$
- note that spaces are not nested $\left(\mathcal{V}_{h, p} \not \supset \mathcal{V}_{h, p-1} \not \supset \ldots\right)$
- ILUT smoother at single-patch level

Sketch of our solution strategy

- Coarsening in p reduces the stencil but not so much the number of unknowns
- p-multigrid with direct projection $\mathcal{V}_{h, p} \searrow \mathcal{V}_{h, 1}$
- note that spaces are not nested $\left(\mathcal{V}_{h, p} \not \supset \mathcal{V}_{h, p-1} \not \supset \ldots\right)$
- ILUT smoother at single-patch level
- For $p=1$, IGA- C^{0} reduces to FEA with Lagrange finite elements
- h-multigrid with established smoothers and coarse-grid solvers

$$
\operatorname{ref}_{h}=3
$$

$\operatorname{ref}_{h}=2$
$\operatorname{ref}_{h}=1$

$$
\operatorname{ref}_{h}=0
$$

Sketch of our solution strategy

- Coarsening in p reduces the stencil but not so much the number of unknowns
- p-multigrid with direct projection $\mathcal{V}_{h, p} \searrow \mathcal{V}_{h, 1}$
- note that spaces are not nested $\left(\mathcal{V}_{h, p} \not \supset \mathcal{V}_{h, p-1} \not \supset \ldots\right)$
- ILUT smoother at single-patch level
- For $p=1$, IGA- C^{0} reduces to FEA with Lagrange finite elements
- h-multigrid with established smoothers and coarse-grid solvers
- Exploit the block structure of multi-patch topologies by using a block-ILUT smoother

Sketch of our solution strategy

- Coarsening in p reduces the stencil but not so much the number of unknowns
- p-multigrid with direct projection $\mathcal{V}_{h, p} \searrow \mathcal{V}_{h, 1}$
- note that spaces are not nested $\left(\mathcal{V}_{h, p} \not \supset \mathcal{V}_{h, p-1} \not \supset \ldots\right)$
- ILUT smoother at single-patch level
- For $p=1, \mathrm{IGA}-C^{0}$ reduces to FEA with Lagrange finite elements
- h-multigrid with established smoothers and coarse-grid solvers
- Exploit the block structure of multi-patch topologies by using a block-ILUT smoother
- robust with respect to h, p, N_{p}, and 'the PDE'
- computational efficient throughout all problem sizes
- applicable to locally refined THB-splines
- good spatial solver for transient problems (Part II)

The complete multigrid cycle

The complete multigrid algorithm - the outer p-multigrid part

1. Starting from $\mathrm{u}_{h, p}^{(0,0)}$ apply ν_{1} pre-smoothing steps:

$$
\mathrm{u}_{h, p}^{(0, m)}:=\mathrm{u}_{h, p}^{(0, m-1)}+\mathrm{S}_{h, p}\left(\mathrm{f}_{h, p}-\mathrm{A}_{h, p} \mathrm{u}_{h, p}^{(0, m-1)}\right), \quad m=0,1, \ldots, \nu_{1}
$$

The complete multigrid algorithm - the outer p-multigrid part

1. Starting from $\mathrm{u}_{h, p}^{(0,0)}$ apply ν_{1} pre-smoothing steps:

$$
\mathrm{u}_{h, p}^{(0, m)}:=\mathrm{u}_{h, p}^{(0, m-1)}+\mathrm{S}_{h, p}\left(\mathrm{f}_{h, p}-\mathrm{A}_{h, p} \mathrm{u}_{h, p}^{(0, m-1)}\right), \quad m=0,1, \ldots, \nu_{1}
$$

2. Restrict the residual onto $\mathcal{V}_{h, 1}$:

$$
\begin{aligned}
\mathrm{r}_{h, 1} & =\mathrm{I}_{h, p}^{h, 1}\left(\mathrm{f}_{h, p}-\mathrm{A}_{h, p} \mathrm{u}_{h, p}^{\left(0, \nu_{1}\right)}\right), \quad \mathrm{I}_{h, p}^{h, 1}:=\mathrm{M}_{h, 1}^{-1} \mathrm{M}_{h, p, 1} \\
\text { with } \mathrm{M}_{h, p, 1} & =\left\{\left(\varphi_{i}, \psi_{j}\right)\right\}_{i, j} \text {, where } \varphi_{i} \in \mathcal{V}_{h, p} \text { and } \psi_{j} \in \mathcal{V}_{h, 1}
\end{aligned}
$$

The complete multigrid algorithm - the outer p-multigrid part

1. Starting from $\mathrm{u}_{h, p}^{(0,0)}$ apply ν_{1} pre-smoothing steps:

$$
\mathrm{u}_{h, p}^{(0, m)}:=\mathrm{u}_{h, p}^{(0, m-1)}+\mathrm{S}_{h, p}\left(\mathrm{f}_{h, p}-\mathrm{A}_{h, p} \mathrm{u}_{h, p}^{(0, m-1)}\right), \quad m=0,1, \ldots, \nu_{1}
$$

2. Restrict the residual onto $\mathcal{V}_{h, 1}$:

$$
\mathrm{r}_{h, 1}=\mathrm{I}_{h, p}^{h, 1}\left(\mathrm{f}_{h, p}-\mathrm{A}_{h, p} \mathrm{u}_{h, p}^{\left(0, \nu_{1}\right)}\right), \quad \mathrm{I}_{h, p}^{h, 1}:=\mathrm{M}_{h, 1}^{-1} \mathrm{M}_{h, p, 1}
$$

with $\mathrm{M}_{h, p, 1}=\left\{\left(\varphi_{i}, \psi_{j}\right)\right\}_{i, j}$, where $\varphi_{i} \in \mathcal{V}_{h, p}$ and $\psi_{j} \in \mathcal{V}_{h, 1}$
3. Solve the residual equation with an h-multigrid method:

$$
\mathrm{A}_{h, 1} \mathrm{e}_{h, 1}=\mathrm{r}_{h, 1}
$$

The complete multigrid algorithm - the outer p-multigrid part

1. Starting from $\mathrm{u}_{h, p}^{(0,0)}$ apply ν_{1} pre-smoothing steps:

$$
\mathrm{u}_{h, p}^{(0, m)}:=\mathrm{u}_{h, p}^{(0, m-1)}+\mathrm{S}_{h, p}\left(\mathrm{f}_{h, p}-\mathrm{A}_{h, p} \mathrm{u}_{h, p}^{(0, m-1)}\right), \quad m=0,1, \ldots, \nu_{1}
$$

2. Restrict the residual onto $\mathcal{V}_{h, 1}$:

$$
\mathrm{r}_{h, 1}=\mathrm{I}_{h, p}^{h, 1}\left(\mathrm{f}_{h, p}-\mathrm{A}_{h, p} \mathrm{u}_{h, p}^{\left(0, \nu_{1}\right)}\right), \quad \mathrm{I}_{h, p}^{h, 1}:=\mathrm{M}_{h, 1}^{-1} \mathrm{M}_{h, p, 1}
$$

with $\mathrm{M}_{h, p, 1}=\left\{\left(\varphi_{i}, \psi_{j}\right)\right\}_{i, j}$, where $\varphi_{i} \in \mathcal{V}_{h, p}$ and $\psi_{j} \in \mathcal{V}_{h, 1}$
3. Solve the residual equation with an h-multigrid method:

$$
\mathrm{A}_{h, 1} \mathrm{e}_{h, 1}=\mathrm{r}_{h, 1}
$$

4. Project the error onto $\mathcal{V}_{h, p}$ and update the solution:

$$
\mathrm{u}_{h, p}^{\left(0, \nu_{1}\right)}:=\mathrm{u}_{h, p}^{\left(0, \nu_{1}\right)}+\mathrm{I}_{h, 1}^{h, p}\left(\mathrm{e}_{h, 1}\right), \quad \mathrm{I}_{h, 1}^{h, p}:=\mathrm{M}_{h, p}^{-1} \mathrm{M}_{h, 1, p}
$$

The complete multigrid algorithm - the outer p-multigrid part

1. Starting from $\mathrm{u}_{h, p}^{(0,0)}$ apply ν_{1} pre-smoothing steps:

$$
\mathrm{u}_{h, p}^{(0, m)}:=\mathrm{u}_{h, p}^{(0, m-1)}+\mathrm{S}_{h, p}\left(\mathrm{f}_{h, p}-\mathrm{A}_{h, p} \mathrm{u}_{h, p}^{(0, m-1)}\right), \quad m=0,1, \ldots, \nu_{1}
$$

2. Restrict the residual onto $\mathcal{V}_{h, 1}$:

$$
\mathrm{r}_{h, 1}=\mathrm{I}_{h, p}^{h, 1}\left(\mathrm{f}_{h, p}-\mathrm{A}_{h, p} \mathrm{u}_{h, p}^{\left(0, \nu_{1}\right)}\right), \quad \mathrm{I}_{h, p}^{h, 1}:=\mathrm{M}_{h, 1}^{-1} \mathrm{M}_{h, p, 1}
$$

with $\mathrm{M}_{h, p, 1}=\left\{\left(\varphi_{i}, \psi_{j}\right)\right\}_{i, j}$, where $\varphi_{i} \in \mathcal{V}_{h, p}$ and $\psi_{j} \in \mathcal{V}_{h, 1}$
3. Solve the residual equation with an h-multigrid method:

$$
\mathrm{A}_{h, 1} \mathrm{e}_{h, 1}=\mathrm{r}_{h, 1}
$$

4. Project the error onto $\mathcal{V}_{h, p}$ and update the solution:

$$
\mathrm{u}_{h, p}^{\left(0, \nu_{1}\right)}:=\mathrm{u}_{h, p}^{\left(0, \nu_{1}\right)}+\mathrm{I}_{h, 1}^{h, p}\left(\mathrm{e}_{h, 1}\right), \quad \mathrm{I}_{h, 1}^{h, p}:=\mathrm{M}_{h, p}^{-1} \mathrm{M}_{h, 1, p}
$$

5. Apply ν_{2} post-smoothing steps as in 1 . to obtain $u_{h, p}^{(1,0)}:=u_{h, p}^{\left(0, \nu_{1}+\nu_{2}\right)}$ and repeat steps 1.-5. until $\left\|\mathrm{r}_{h, p}^{(k)}\right\|<\operatorname{tol}\left\|\mathrm{r}_{\mathrm{h}, \mathrm{p}}^{(0)}\right\|$ for some tolerance parameter tol.

The complete multigrid algorithm - the outer p-multigrid part

1. Starting from $\mathrm{u}_{h, p}^{(0,0)}$ apply ν_{1} pre-smoothing steps:

$$
\mathrm{u}_{h, p}^{(0, m)}:=\mathrm{u}_{h, p}^{(0, m-1)}+\mathrm{S}_{h, p}\left(\mathrm{f}_{h, p}-\mathrm{A}_{h, p} \mathrm{u}_{h, p}^{(0, m-1)}\right), \quad m=0,1, \ldots, \nu_{1}
$$

2. Restrict the residual onto $\mathcal{V}_{h, 1}$:

$$
\mathrm{r}_{h, 1}=\mathrm{I}_{h, p}^{h, 1}\left(\mathrm{f}_{h, p}-\mathrm{A}_{h, p} \mathrm{u}_{h, p}^{\left(0, \nu_{1}\right)}\right), \quad \mathrm{I}_{h, p}^{h, 1}:=\mathrm{M}_{h, 1}^{-1} \mathrm{M}_{h, p, 1} \quad \text { mass lumping }
$$

with $\mathrm{M}_{h, p, 1}=\left\{\left(\varphi_{i}, \psi_{j}\right)\right\}_{i, j}$, where $\varphi_{i} \in \mathcal{V}_{h, p}$ and $\psi_{j} \in \mathcal{V}_{h, 1}$
3. Solve the residual equation with an h-multigrid method:

$$
\mathrm{A}_{h, 1} \mathrm{e}_{h, 1}=\mathrm{r}_{h, 1}
$$

4. Project the error onto $\mathcal{V}_{h, p}$ and update the solution:

$$
\mathrm{u}_{h, p}^{\left(0, \nu_{1}\right)}:=\mathrm{u}_{h, p}^{\left(0, \nu_{1}\right)}+\mathrm{I}_{h, 1}^{h, p}\left(\mathrm{e}_{h, 1}\right), \quad \mathrm{I}_{h, 1}^{h, p}:=\mathrm{M}_{h, p}^{-1} \mathrm{M}_{h, 1, p} \quad \text { mass lumping (B-splines!) }
$$

5. Apply ν_{2} post-smoothing steps as in 1 . to obtain $u_{h, p}^{(1,0)}:=u_{h, p}^{\left(0, \nu_{1}+\nu_{2}\right)}$ and repeat steps 1.-5. until $\left\|\mathrm{r}_{h, p}^{(k)}\right\|<\operatorname{tol}\left\|\mathrm{r}_{\mathrm{h}, \mathrm{p}}^{(0)}\right\|$ for some tolerance parameter tol.

The complete multigrid algorithm - the outer p-multigrid part

1. Starting from $\mathrm{u}_{h, p}^{(0,0)}$ apply ν_{1} pre-smoothing steps:

$$
\mathrm{u}_{h, p}^{(0, m)}:=\mathrm{u}_{h, p}^{(0, m-1)}+\mathrm{S}_{h, p}\left(\mathrm{f}_{h, p}-\mathrm{A}_{h, p} \mathrm{u}_{h, p}^{(0, m-1)}\right), \quad m=0,1, \ldots, \nu_{1}
$$

2. Restrict the residual onto $\mathcal{V}_{h, 1}$:

$$
\mathrm{r}_{h, 1}=\mathrm{I}_{h, p}^{h, 1}\left(\mathrm{f}_{h, p}-\mathrm{A}_{h, p} \mathrm{u}_{h, p}^{\left(0, \nu_{1}\right)}\right), \quad \mathrm{I}_{h, p}^{h, 1}:=\mathrm{M}_{h, 1}^{-1} \mathrm{M}_{h, p, 1} \quad \text { mass lumping }
$$

with $\mathrm{M}_{h, p, 1}=\left\{\left(\varphi_{i}, \psi_{j}\right)\right\}_{i, j}$, where $\varphi_{i} \in \mathcal{V}_{h, p}$ and $\psi_{j} \in \mathcal{V}_{h, 1}$
3. Solve the residual equation with an h-multigrid method:

$$
\mathrm{A}_{h, 1} \mathrm{e}_{h, 1}=\mathrm{r}_{h, 1}
$$

4. Project the error onto $\mathcal{V}_{h, p}$ and update the solution:

$$
\mathrm{u}_{h, p}^{\left(0, \nu_{1}\right)}:=\mathrm{u}_{h, p}^{\left(0, \nu_{1}\right)}+\mathrm{I}_{h, 1}^{h, p}\left(\mathrm{e}_{h, 1}\right), \quad \mathrm{I}_{h, 1}^{h, p}:=\mathrm{M}_{h, p}^{-1} \mathrm{M}_{h, 1, p} \quad \text { mass lumping (B-splines!) }
$$

5. Apply ν_{2} post-smoothing steps as in 1 . to obtain $u_{h, p}^{(1,0)}:=u_{h, p}^{\left(0, \nu_{1}+\nu_{2}\right)}$ and repeat steps 1.-5. until $\left\|\mathrm{r}_{h, p}^{(k)}\right\|<\operatorname{tol}\left\|\mathrm{r}_{\mathrm{h}, \mathrm{p}}^{(0)}\right\|$ for some tolerance parameter tol.

The complete multigrid algorithm - the inner h-multigrid part

3.1. Starting from $u_{h, 1}^{(k, 0)}$ apply ν_{1} pre-smoothing steps:

$$
\mathrm{u}_{h, 1}^{(k, m)}:=\mathrm{u}_{h, 1}^{(k, m-1)}+\mathrm{S}_{h, 1}\left(\mathrm{f}_{h, 1}-\mathrm{A}_{h, 1} \mathrm{u}_{h, 1}^{(k, m-1)}\right), \quad m=0,1, \ldots, \nu_{1}
$$

3.2. Restrict the residual onto $\mathcal{V}_{2 h, 1}$:

$$
\mathrm{r}_{2 h, 1}=\mathrm{I}_{h, 1}^{2 h, 1}\left(\mathrm{f}_{h, 1}-\mathrm{A}_{h, 1} \mathrm{u}_{h, 1}^{\left(k, \nu_{1}\right)}\right), \quad \mathrm{I}_{h, 1}^{2 h, 1} \text { linear interpolation }
$$

3.3. Solve the residual equation by applying h-multigrid recursively or the coarse-grid solver:

$$
\mathrm{A}_{2 h, 1} \mathrm{e}_{2 h, 1}=\mathrm{r}_{2 h, 1}
$$

3.4. Project the error onto $\mathcal{V}_{h, 1}$ and update the solution:

$$
\mathrm{u}_{h, 1}^{\left(k, \nu_{1}\right)}:=\mathrm{u}_{h, 1}^{\left(k, \nu_{1}\right)}+\mathrm{I}_{2 h, 1}^{h, 1}\left(\mathrm{e}_{2 h, 1}\right), \quad \mathrm{I}_{2 h, 1}^{h, 1}:=\frac{1}{2}\left(\mathrm{I}_{h, 1}^{2 h, 1}\right)^{\top}
$$

3.5. Apply ν_{2} post-smoothing steps as in 3.1. to obtain $\mathrm{u}_{h, 1}^{(k+1,0)}:=\mathrm{u}_{h, 1}^{\left(k, \nu_{1}+\nu_{2}\right)}$ and repeat steps 3.1.-3.5. according to the h-multigrid cycle (V - or W -cycle).

Multigrid components

	h-multigrid	p-multigrid
restriction operator	$\mathrm{I}_{h, 1}^{2 h, 1}$ linear interpolation	$\mathrm{I}_{h, 1}^{h, p}:=\mathrm{M}_{h, p}^{-1} \mathrm{M}_{h, 1, p}$
prolongation operator	$\mathrm{I}_{2 h, 1}^{h, 1}:=\frac{1}{2}\left(\mathrm{I}_{h, 1}^{2 h, 1}\right)^{\top}$	$\mathrm{I}_{h, p}^{h, 1}:=\mathrm{M}_{h, 1}^{-1} \mathrm{M}_{h, p, 1}$

Multigrid components

	h-multigrid	p-multigrid
restriction operator	$\mathrm{I}_{h, 1}^{2 h, 1}$ linear interpolation	$\mathrm{I}_{h, 1}^{h, p}:=\mathrm{M}_{h, p}^{-1} \mathrm{M}_{h, 1, p}$
prolongation operator	$\mathrm{I}_{2 h, 1}^{h, 1}:=\frac{1}{2}\left(\mathrm{I}_{h, 1}^{2 h, 1}\right)^{\top}$	$\mathrm{I}_{h, p}^{h, 1}:=\mathrm{M}_{h, 1}^{-1} \mathrm{M}_{h, p, 1}$
smoothing operator	incomplete LU factorization of $\mathrm{A}_{h, p} \approx \mathrm{~L}_{h, p} \mathrm{U}_{h, p}$, whereby all elements smaller than 10^{-13} are droped and the amount of non-zero entries per row are kept constant	

[^0]
Multigrid components

	h-multigrid	p-multigrid
restriction operator	$\mathrm{I}_{h, 1}^{2 h, 1}$ linear interpolation	$\mathrm{I}_{h, 1}^{h, p}:=\mathrm{M}_{h, p}^{-1} \mathrm{M}_{h, 1, p}$
prolongation operator	$\mathrm{I}_{2 h, 1}^{h, 1}:=\frac{1}{2}\left(\mathrm{I}_{h, 1}^{2 h, 1}\right)^{\top}$	$\mathrm{I}_{h, p}^{h, 1}:=\mathrm{M}_{h, 1}^{-1} \mathrm{M}_{h, p, 1}$
smoothing operator	incomplete LU factorization of $\mathrm{A}_{h, p} \approx \mathrm{~L}_{h, p} \mathrm{U}_{h, p}$, whereby all elements smaller than 10^{-13} are droped and the amount of non-zero entries per row are kept constant	
$\mathrm{A}_{h, p}$ operator	rediscretization	

[^1]Spectrum of the iteration matrix: Poisson on quarter annulus, $p=2$

R. Tielen et al. 2020, DOI: 10.1016/j.cma.2020.113347

Spectrum of the iteration matrix: Poisson on quarter annulus, $p=3$

R. Tielen et al. 2020, DOI: 10.1016/j.cma.2020.113347

Spectrum of the iteration matrix: Poisson on quarter annulus, $p=4$

R. Tielen et al. 2020, DOI: 10.1016/j.cma.2020.113347

Numerical examples

\#1: Poisson's equation on a quarter annulus domain with radii 1 and 2

	$p=2$		$p=3$		$p=4$		$p=5$	
	ILUT	GS	ILUT	GS	ILUT	GS	ILUT	GS
$h=2^{-6}$	4	30	3	62	3	176	3	491
$h=2^{-7}$	4	29	3	61	3	172	3	499
$h=2^{-8}$	5	30	3	60	3	163	3	473
$h=2^{-9}$	5	32	3	61	3	163	3	452

R. Tielen et al. 2020, DOI: 10.1016/j.cma.2020.113347

Numerical examples

\#2: CDR equation with $\mathbb{D}=\left(\begin{array}{cc}1.2 & -0.7 \\ -0.4 & 0.9\end{array}\right), \mathbf{v}=(0.4,-0.2)^{\top}$, and $r=0.3$ on the unit square domain

	$p=2$		$p=3$		$p=4$		$p=5$	
	ILUT	GS	ILUT	GS	ILUT	GS	ILUT	GS
$h=2^{-6}$	5	-	3	-	3	-	4	-
$h=2^{-7}$	5	-	3	-	4	-	4	-
$h=2^{-8}$	5	-	3	-	3	-	4	-
$h=2^{-9}$	5	-	4	-	3	-	4	-

R. Tielen et al. 2020, DOI: 10.1016/j.cma.2020.113347

Computational efficiency: p-vs. h-multigrid

Comparison with h-multigrid method with subspace corrected mass smoother [Takacs, 2017]

Computational efficiency: p- vs. h-multigrid

Comparison with h-multigrid method with subspace corrected mass smoother [Takacs, 2017]

Computational efficiency: $\{h, p\}$-multigrid $+\{$ ILUT,SCMS $\}$-smoother

Numerical examples: THB splines

\#3: Poisson's equation on the unit square domain

	$p=2$		$p=3$		$p=4$		$p=5$	
	ILUT	GS	ILUT	GS	ILUT	GS	ILUT	GS
$h=2^{-4}$	6	17	8	47	7	177	10	1033
$h=2^{-5}$	6	16	7	44	8	182	7	923
$h=2^{-6}$	6	17	5	43	6	201	12	1009

R. Tielen et al. 2020, DOI: 10.1016/j.cma.2020.113347

Block ILUT

Exact LU decomposition of the block matrix A

$$
\left[\begin{array}{cccc}
\mathrm{A}_{11} & & & \mathrm{~A}_{\Gamma 1} \\
& \ddots & & \vdots \\
& & \mathrm{~A}_{N_{p} N_{p}} & \mathrm{~A}_{\Gamma N_{p}} \\
\mathrm{~A}_{1 \Gamma} & \cdots & \mathrm{~A}_{N_{p} \Gamma} & \mathrm{~A}_{\Gamma \Gamma}
\end{array}\right]=\left[\begin{array}{ccccc}
\mathrm{L}_{1} & & & \\
& \ddots & & \mathrm{C}_{1} \\
& & \mathrm{~L}_{N_{p}} & \\
\mathrm{~B}_{1} & \cdots & \mathrm{~B}_{N_{p}} & \mathrm{I}
\end{array}\right]\left[\begin{array}{ccccc}
\mathrm{U}_{1} & & & \vdots \\
& \ddots & & \vdots \\
& & \mathrm{U}_{N_{p}} & \mathrm{C}_{N_{p}} \\
& & & \mathrm{~S}
\end{array}\right],
$$

with

$$
\mathrm{A}_{\ell \ell}=\mathrm{L}_{\ell} \mathrm{U}_{\ell}, \quad \mathrm{B}_{\ell}=\mathrm{A}_{\ell \Gamma} \mathrm{U}_{\ell}^{-1}, \quad \mathrm{C}_{\ell}=\mathrm{L}_{\ell}^{-1} \mathrm{~A}_{\Gamma \ell}, \quad \mathrm{S}=\mathrm{A}_{\Gamma \Gamma}-\sum_{\ell=1}^{N_{p}} \mathrm{~B}_{\ell} \mathrm{C}_{\ell}
$$

Block ILUT

Approximate LU decomposition of the block matrix A

$$
\left[\begin{array}{cccc}
\mathrm{A}_{11} & & & \mathrm{~A}_{\Gamma 1} \\
& \ddots & & \vdots \\
& & \mathrm{~A}_{N_{p} N_{p}} & \mathrm{~A}_{\Gamma N_{p}} \\
\mathrm{~A}_{1 \Gamma} & \cdots & \mathrm{~A}_{N_{p} \Gamma} & \mathrm{~A}_{\Gamma \Gamma}
\end{array}\right] \approx\left[\begin{array}{ccccc}
\tilde{\mathrm{L}}_{1} & & & \\
& \ddots & & \tilde{\mathrm{C}}_{1} \\
& & \tilde{\mathrm{~L}}_{N_{p}} & \\
\tilde{\mathrm{~B}}_{1} & \cdots & \tilde{\mathrm{~B}}_{N_{p}} & \mathrm{I}
\end{array}\right]\left[\begin{array}{cccc}
\tilde{\mathrm{U}}_{1} & & & \vdots \\
& \ddots & & \tilde{\mathrm{U}}_{N_{p}} \\
& \tilde{\mathrm{C}}_{N_{p}} \\
& & & \tilde{\mathrm{~S}}
\end{array}\right],
$$

with

$$
\mathrm{A}_{\ell \ell}=\mathrm{L}_{\ell} \mathrm{U}_{\ell}, \quad \mathrm{B}_{\ell}=\mathrm{A}_{\ell \Gamma} \mathrm{U}_{\ell}^{-1}, \quad \mathrm{C}_{\ell}=\mathrm{L}_{\ell}^{-1} \mathrm{~A}_{\Gamma \ell}, \quad \mathrm{S}=\mathrm{A}_{\Gamma \Gamma}-\sum_{\ell=1}^{N_{p}} \mathrm{~B}_{\ell} \mathrm{C}_{\ell}
$$

Let us replace L_{ℓ} and U_{ℓ} by their (local) ILUT factorizations (compute in parallel!)

$$
\mathrm{A}_{\ell \ell} \approx \tilde{\mathrm{L}}_{\ell} \tilde{\mathrm{U}}_{\ell}, \quad \tilde{\mathrm{B}}_{\ell}=\mathrm{A}_{\ell \Gamma} \tilde{\mathrm{U}}_{\ell}^{-1}, \quad \tilde{\mathrm{C}}_{\ell}=\tilde{\mathrm{L}}_{\ell}^{-1} \mathrm{~A}_{\Gamma \ell}, \quad \tilde{\mathrm{S}}=\mathrm{A}_{\Gamma \Gamma}-\sum_{\ell=1}^{N_{p}} \tilde{\mathrm{~B}}_{\ell} \tilde{\mathrm{C}}_{\ell}
$$

I.C.L. Nievinski et al. Parallel implementation of a two-level algebraic ILU(k)-based domain decomposition preconditioner, TEMA (São Carlos) 19(1), Jan-Apr 2018

Numerical examples: Block-ILUT vs. global ILUT

\#1: Poisson's equation on the quarter annulus domain with radii 1 and 2

	$p=2$ \# patches			$p=3$ \# patches			$p=4$ \# patches			$p=5$ \# patches		
	4	16	64	4	16	64	4	16	64	4	16	64
$h=2^{-5}$	3(5)	4(7)	4(9)	3(5)	3(7)	4(11)	2(4)	2(6)	4(-)	2(4)	2(6)	-(-)
$h=2^{-6}$	3(5)	3(5)	4(7)	3(5)	$3(7)$	4(10)	3(6)	2(7)	$3(11)$	$3(5)$	$3(7)$	3(10)
$h=2^{-7}$	3(5)	3(5)	$3(5)$	$3(5)$	$3(6)$	3(8)	3(5)	2(6)	$3(10)$	-(5)	6 (7)	$3(11)$

Numbers in parentheses correspond to global ILUT
R. Tielen et al. A block ILUT smoother for multipatch geometries in Isogeometric Analysis, To appear in: Springer INdAM Series, Springer, 2021

Numerical examples: Block-ILUT vs. global ILUT

 \#2: CDR equation with $\mathbb{D}=\left(\begin{array}{cc}1.2 & -0.7 \\ -0.4 & 0.9\end{array}\right), \mathbf{v}=(0.4,-0.2)^{\top}$, and $r=0.3$ on the unit square domain| | $\begin{gathered} p=2 \\ \# \text { patches } \end{gathered}$ | | | $\begin{gathered} p=3 \\ \# \text { patches } \end{gathered}$ | | | $p=4$
 \# patches | | | $p=5$
 \# patches | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 4 | 16 | 64 | 4 | 16 | 64 | 4 | 16 | 64 | 4 | 16 | 64 |
| $h=2^{-5}$ | 4(6) | 4(8) | 7(11) | $3(6)$ | $3(9)$ | 5(15) | 2(6) | $3(8)$ | $5(15)$ | 2(5) | 2(7) | 4(14) |
| $h=2^{-6}$ | $4(6)$ | $4(7)$ | $5(8)$ | $3(6)$ | $3(8)$ | $4(10)$ | $3(7)$ | $3(9)$ | $4(13)$ | $3(7)$ | $3(8)$ | $3(13)$ |
| $h=2^{-7}$ | $4(6)$ | $4(6)$ | $4(7)$ | $3(6)$ | $3(7)$ | $3(8)$ | $2(7)$ | $3(7)$ | $3(10)$ | 4(6) | $3(8)$ | $3(12)$ |

Numbers in parentheses correspond to global ILUT
R. Tielen et al. A block ILUT smoother for multipatch geometries in Isogeometric Analysis, To appear in: Springer INdAM Series, Springer, 2021

Numerical examples: Block-ILUT vs. global ILUT

\#4: Poisson's equation on the Yeti footprint

	$p=2$		$p=3$		$p=4$		$p=5$	
	block	global	block	global	block	global	block	global
$h=2^{-3}$	4	5	2	4	2	4	2	4
$h=2^{-4}$	4	8	3	5	3	5	2	4
$h=2^{-5}$	4	8	3	6	3	5	3	5

R. Tielen et al. A block ILUT smoother for multipatch geometries in Isogeometric Analysis, To appear in: Springer INdAM Series, Springer, 2021

Outline

(1) Motivation and problem formulations
(2) Part I: Multigrid methods for IGA

Introduction to h - and p-multigrid
ILUT smoother for single-patch IGA
Block-ILUT smoother for multi-patch IGA

- robust with respect to h, p, N_{p}, and 'the PDE'
- computational efficient throughout all problem sizes
- applicable to locally refined THB-splines
- Good spatial solver for transient problems (Part II)
(3) Part II: Multigrid reduction in time (MGRIT)

Introduction to MGRIT MGRIT-IGA
(4) Conclusions

Part II: Multigrid reduction in time (MGRIT)

S. Friedhoff, et al. A Multigrid-in-Time Algorithm for Solving Evolution Equations in Parallel, $16^{\text {th }}$ Copper Mountain Conference on Multigrid Methods 2013

Sketch of the MGRIT algorithm

Heat-Eq: Find $u_{h, p}^{n+1} \in \mathcal{V}_{h, p}$ such that

$$
\left[\mathrm{M}_{h, p}+\Delta t_{F} \mathrm{~K}_{h, p}\right] \mathrm{u}_{h, p}^{n+1}=\mathrm{M}_{h, p} \mathrm{u}_{h, p}^{n}+\mathrm{f}_{h, p}
$$

S. Friedhoff, et al. A Multigrid-in-Time Algorithm for Solving Evolution Equations in Parallel, $16^{\text {th }}$ Copper Mountain Conference on Multigrid Methods 2013

Sketch of the MGRIT algorithm

Heat-Eq: Find $u_{h, p}^{n+1} \in \mathcal{V}_{h, p}$ such that

$$
\left[\mathrm{M}_{h, p}+\Delta t_{F} \mathrm{~K}_{h, p}\right] \mathrm{u}_{h, p}^{n+1}=\mathrm{M}_{h, p} \mathrm{u}_{h, p}^{n}+\mathrm{f}_{h, p}
$$

Writing out the above two-level scheme for all time levels yields

$$
\mathrm{A}_{h, p} \mathrm{U}_{h, p}=\left[\begin{array}{cccc}
\mathrm{I}_{h, p} & & & \\
-\Psi_{h, p} \mathrm{M}_{h, p} & \mathrm{I}_{h, p} & & \\
& \ddots & \ddots & \\
& & -\Psi_{h, p} \mathrm{M}_{h, p} & \mathrm{I}_{h, p}
\end{array}\right]\left[\begin{array}{c}
\mathrm{u}_{h, p}^{0} \\
\mathrm{u}_{h, p}^{1} \\
\vdots \\
\mathrm{u}_{h, p}^{N_{t}}
\end{array}\right]=\Delta t_{F}\left[\begin{array}{c}
\Psi_{h, p} \mathrm{f}_{h, p} \\
\Psi_{h, p} \mathrm{f}_{h, p} \\
\vdots \\
\Psi_{h, p} \mathrm{f}_{h, p}
\end{array}\right]
$$

with

$$
\Psi_{h, p}=\left[\mathrm{M}_{h, p}+\Delta t_{F} \mathrm{~K}_{h, p}\right]^{-1}
$$

S. Friedhoff, et al. A Multigrid-in-Time Algorithm for Solving Evolution Equations in Parallel, $16^{\text {th }}$ Copper Mountain Conference on Multigrid Methods 2013

Sketch of the MGRIT algorithm, cont'd

Reordering of $\mathrm{A}_{h, p}$ into (F)ine and (C)oarse time levels yields

$$
\left[\begin{array}{cc}
\mathrm{A}_{F F} & \mathrm{~A}_{F C} \\
\mathrm{~A}_{C F} & \mathrm{~A}_{C C}
\end{array}\right]=\left[\begin{array}{rr}
\mathrm{I}_{F} & 0 \\
\mathrm{~A}_{C F} & \mathrm{~A}_{F F}^{-1}
\end{array} \mathrm{I}_{C}\right]\left[\begin{array}{cc}
\mathrm{A}_{F F} & 0 \\
0 & \mathrm{~S}
\end{array}\right]\left[\begin{array}{ll}
\mathrm{I}_{F} & \mathrm{~A}_{F F}^{-1} \mathrm{~A}_{F C} \\
0 & \mathrm{I}_{C}
\end{array}\right]
$$

S. Friedhoff, et al. A Multigrid-in-Time Algorithm for Solving Evolution Equations in Parallel, $16^{\text {th }}$ Copper Mountain Conference on Multigrid Methods 2013

Sketch of the MGRIT algorithm, cont'd

Reordering of $\mathrm{A}_{h, p}$ into (F)ine and (C)oarse time levels yields

$$
\left[\begin{array}{cc}
\mathrm{A}_{F F} & \mathrm{~A}_{F C} \\
\mathrm{~A}_{C F} & \mathrm{~A}_{C C}
\end{array}\right]=\left[\begin{array}{rr}
\mathrm{I}_{F} & 0 \\
\mathrm{~A}_{C F} & \mathrm{~A}_{F F}^{-1}
\end{array} \mathrm{I}_{C}\right]\left[\begin{array}{cc}
\mathrm{A}_{F F} & 0 \\
0 & \mathrm{~S}
\end{array}\right]\left[\begin{array}{ll}
\mathrm{I}_{F} & \mathrm{~A}_{F F}^{-1} \mathrm{~A}_{F C} \\
0 & \mathrm{I}_{C}
\end{array}\right]
$$

with block-diagonal fine-level system matrix

$$
\mathrm{A}_{F F}=\mathrm{I}_{N_{t} / m, N_{t} / m} \otimes \underbrace{\left(\begin{array}{cccc}
\mathrm{I}_{h, p} & & & \\
-\Psi_{h, p} \mathrm{M}_{h, p} & \mathrm{I}_{h, p} & & \\
& \ddots & \ddots & \\
& & -\Psi_{h, p} \mathrm{M}_{h, p} & \mathrm{I}_{h, p}
\end{array}\right)}_{m \times m \text { blocks }}
$$

[^2]
Sketch of the MGRIT algorithm, cont'd

Reordering of $\mathrm{A}_{h, p}$ into (F)ine and (C)oarse time levels yields

$$
\left[\begin{array}{cc}
\mathrm{A}_{F F} & \mathrm{~A}_{F C} \\
\mathrm{~A}_{C F} & \mathrm{~A}_{C C}
\end{array}\right]=\left[\begin{array}{rr}
\mathrm{I}_{F} & 0 \\
\mathrm{~A}_{C F} & \mathrm{~A}_{F F}^{-1}
\end{array} \mathrm{I}_{C}\right]\left[\begin{array}{cc}
\mathrm{A}_{F F} & 0 \\
0 & \mathrm{~S}
\end{array}\right]\left[\begin{array}{ll}
\mathrm{I}_{F} & \mathrm{~A}_{F F}^{-1} \mathrm{~A}_{F C} \\
0 & \mathrm{I}_{C}
\end{array}\right]
$$

with block-diagonal fine-level system matrix

$$
\mathrm{A}_{F F}=\mathrm{I}_{N_{t} / m, N_{t} / m} \otimes \underbrace{\left(\begin{array}{clll}
\mathrm{I}_{h, p} & & & \\
-\Psi_{h, p} \mathrm{M}_{h, p} & \mathrm{I}_{h, p} & & \\
& \ddots & \ddots & \\
& & -\Psi_{h, p} \mathrm{M}_{h, p} & \mathrm{I}_{h, p}
\end{array}\right)}_{m \times m \text { blocks }}
$$

and the Schur complement $\mathrm{S}=\mathrm{A}_{C C}-\mathrm{A}_{C F} \mathrm{~A}_{F F}^{-1} \mathrm{~A}_{F C}$

[^3]
Sketch of the MGRIT algorithm, cont'd

Approximate the Schur complement

$$
\mathrm{S}=\left[\begin{array}{ccccc}
\mathrm{I} & & & \\
-\left(\Psi_{h, p} \mathrm{M}_{h, p}\right)^{m} & \mathrm{I} & & \\
& \ddots & \ddots & \\
& & -\left(\Psi_{h, p} \mathrm{M}_{h, p}\right)^{m} & \mathrm{I}
\end{array}\right] \approx\left[\begin{array}{cccc}
\mathrm{I} & & & \\
-\Phi_{h, p} \mathrm{M}_{h, p} & \mathrm{I} & & \\
& \ddots & \ddots & \\
& & -\Phi_{h, p} \mathrm{M}_{h, p} & \mathrm{I}
\end{array}\right]
$$

with coarse integrator

$$
\Phi_{h, p}=\left[\mathrm{M}_{h, p}+\Delta t_{C} \mathrm{~K}_{h, p}\right]^{-1}
$$

S. Friedhoff, et al. A Multigrid-in-Time Algorithm for Solving Evolution Equations in Parallel, $16^{\text {th }}$ Copper Mountain Conference on Multigrid Methods 2013

The MGRIT-IGA V-cycle

- relaxation exact solve \downarrow restriction \nearrow interpolation

MGRIT-IGA implementation

G+Smo: Geometry plus Simulation Modules

- open-source cross-platform IGA library written in C++
- dimension-independent code development using templates
- building on Eigen $\mathrm{C}++$ library for linear algebra

XBraid: Parallel Multigrid in Time

- open-source implementation of the optimal-scaling multigrid solver in MPI/C with $\mathrm{C}++$ interface
- extendable by overloading callback functions

Try it yourself
https://github.com/gismo/gismo/tree/xbraid/extensions/gsXBraid

Numerical examples: Strong scaling of MGRIT-IGA

\#5: Heat-Eq with $h=2^{-6}$ spatial resolution solved for $N_{t}=10.000$ time steps with backward Euler method on 128 Xeon Gold 6130 CPUs ($2.10 \mathrm{GHz}, 96 \mathrm{~GB}, 16$ cores)

R. Tielen et al. 2021, arXiv:2107.05337

Numerical examples: Speed-up of MGRIT-IGA

\#5: Heat-Eq with $h=2^{-6}$ spatial resolution solved for $N_{t}=10.000$ time steps with backward Euler method on 128 Xeon Gold 6130 CPUs (2.10GHz, 96GB, 16 cores)

R. Tielen et al. 2021, arXiv:2107.05337

Numerical examples: Weak scaling of MGRIT-IGA

\#5: Heat-Eq with $h=2^{-6}$ spatial resolution solved for $N_{t}=$ cores $/ 64 \cdot 1.000$ time steps with backward Euler method on 128 Xeon Gold 6130 CPUs (2.10GHz, 96GB, 16 cores)

R. Tielen et al. 2021, arXiv:2107.05337

Do we really need p-multigrid or would a standard solver be good enough?

Do we really need p-multigrid or would a standard solver be good enough? No!

CG solver on 3×1 cores

p-mg-ILUT on 3×1 cores

Do we really need p-multigrid or would a standard solver be good enough? No!

CG solver on 3×2 cores

p-mg-ILUT on 3×2 cores

Conclusion

MGRIT-IGA + p-multigrid with (block-)ILUT smoother

- robust with respect to h, p, N_{p}, and 'the PDE'
- computational efficient throughout all problem sizes
- applicable to locally refined THB-splines
- good strong and weak scaling in no. of cores and N_{t}

Conclusion

MGRIT-IGA + p-multigrid with (block-)ILUT smoother

- robust with respect to h, p, N_{p}, and 'the PDE'
- computational efficient throughout all problem sizes
- applicable to locally refined THB-splines
- good strong and weak scaling in no. of cores and N_{t}

What's next?

- MGRIT-IGA with THB-splines and adaptive refinement in time
- extension to nonlinear PDEs and higher-order time integrators

Further reading

R.Tielen, M. Möller, D. Göddeke and C. Vuik: p-multigrid methods and their comparison to h-multigrid methods within Isogeometric Analysis, Computer Methods in Applied Mechanics and Engineering, Vol 372 (2020)
R. Tielen, M. Möller and C. Vuik: A block ILUT smoother for multipatch geometries in Isogeometric Analysis, In: Springer INdAM Series, Springer, 2021
R. Tielen, M. Möller and C. Vuik: Multigrid Reduced in Time for Isogeometric Analysis, Submitted to: Proceedings of the Young Investigators Conference 2021.
R. Tielen, M. Möller and C. Vuik: Combining p-multigrid and multigrid reduced in time methods to obtain a scalable solver for Isogeometric Analysis, arXiv:2107.05337

Thank you for your attention!

[^0]: Y. Saad, ILUT: A dual threshold incomplete LU factorization, DOI: 10.1002/nla. 1680010405

[^1]: Y. Saad, ILUT: A dual threshold incomplete LU factorization, DOI: 10.1002/nla. 1680010405

[^2]: S. Friedhoff, et al. A Multigrid-in-Time Algorithm for Solving Evolution Equations in Parallel, $16^{\text {th }}$ Copper Mountain Conference on Multigrid Methods 2013

[^3]: S. Friedhoff, et al. A Multigrid-in-Time Algorithm for Solving Evolution Equations in Parallel, $16^{\text {th }}$ Copper Mountain Conference on Multigrid Methods 2013

