Efficient solution techniques for isogeometric analysis

Matthias Möller

Department of Applied Mathematics

Delft University of Technology, NL

SFB 1313 Lecture Series

22-02-2022

About me

- Associate Professor of Numerical Analysis at DIAM/TU Delft
- PhD and PostDoc at the Chair of Applied Mathematics and Numerics/TU Dortmund

Research interests

- Finite element and isogeometric analysis
- Adaptive high-resolution schemes for flow problems
- Fast solution techniques for (non-)linear problems
- High-performance and quantum-accelerated computing
- Scientific machine learning

About me

- Associate Professor of Numerical Analysis at DIAM/TU Delft
- PhD and PostDoc at the Chair of Applied Mathematics and Numerics/TU Dortmund

Research interests

- Finite element and isogeometric analysis
- Adaptive high-resolution schemes for flow problems
- Fast solution techniques for (non-)linear problems
- High-performance and quantum-accelerated computing
- Scientific machine learning
- ⇒ MS-12: Scientific machine learning in computational mechanics
 9th GACM Colloquium on Computational Mechanics in Essen, September 21-23, 2022

The IGA team

Jochen Hinz (EPFL)

Roel Tielen (ASML)

Hugo Verhelst (TUD) Andrzej Jaeschke (Łódź)

Collaborations

Göddeke (U Stuttgart), Elgeti/Helmig (RWTH Aachen, TU Vienna), Mantzaflaris (INRIA), Gauger (TU K'lautern), Jüttler (JKU), Simeon (TU K'lautern), ...

Funding

EU-H2020 MOTOR (GA 678727), NWO FlexFloat starting 2022 (\Rightarrow will open soon)

Isogeometric Analysis

Ted Blacker, Sandia National Laboratories

1 Unified mathematical approach towards geometry modelling and PDE analysis

$$\mathbf{x}(\xi,\eta) = \sum_{i,j} \mathbf{x}_{i,j} N_i^p(\xi) N_j^q(\eta)$$
$$u(\xi,\eta) = \sum_{i,j} u_{i,j} N_i^p(\xi) N_j^q(\eta)$$

with B-spline basis functions N_i^p of order p.

- PoU, local support, non-negative
- Geometry-preserving refinement
- Generic extension to high order
- Operations can be expressed at SpMVs

2 'Meshing' + design optimization becomes one global optimization problem

J.P. Hinz, A. Jaeschke, M. Möller, C. Vuik (2021). The role of PDE-based parameterization techniques in gradient-based IGA shape optimization applications. CMAME 378, 113685.

3 C^{p-1} -continuity enables direct simulation of higher-order PDEs

H.M. Verhelst, https://github.com/gismo/gsKLShell (v22.1)

3 C^{p-1} -continuity enables direct simulation of higher-order PDEs

H.M. Verhelst, M. Möller, J.H. Den Besten, A. Mantzaflaris, M.L. Kaminski (2021). Stretch-based hyperelastic material formulations for isogeometric Kirchhoff–Love shells with application to wrinkling. Computer-Aided Design, 139, 103075.

 $\mathbf{3} \ C^{p-1}$ -continuity enables higher-order material point method

Left: Stomakhin et al. (2013). A material point method for snow simulation. ACM Trans. Graph. 32. Right: E. Wobbes, R. Tielen, M. Möller, C. Vuik (2021). Comparison and unification of material-point and optimal transportation meshfree methods. Computational Particle Mechanics, 8, 113-133.

But ...

IGA also has its challenges

- automatic BRep-CAD-to-VRep-analysis workflows (we really don't care)
- efficient $C^{>0}$ multi-patch coupling (Delft, Linz, ...)
- efficient assembly of linear and multi-linear forms (INRIA, Pavia, ...)
- efficient solution of linear systems of equations (Delft, Linz, ...)

• ...

Direct solvers

- Performance study [Collier et al. 2012]
- Refined IGA [Garcia et al. 2018]

Direct solvers

- Performance study [Collier et al. 2012]
- Refined IGA [Garcia et al. 2018]

Preconditioning techniques

- Schwarz methods [da Veiga et al. 2012 & 2013]
- Sylvester equation [Sangalli & Tani 2016]
- Nonsymmetric systems [Tani 2017]
- BPX [Cho & Vásquez 2018]
- Fast diagonalization [Montardini et al. 2019]
- Space-time IGA [Hofer et al. 2019]
- Schwarz methods [Cho 2020]
- Directional splitting [Calo et al. 2021]
- Kronecker product [Loli et al. 2021]

Direct solvers

- Performance study [Collier et al. 2012]
- Refined IGA [Garcia et al. 2018]

Preconditioning techniques

- Schwarz methods [da Veiga et al. 2012 & 2013]
- Sylvester equation [Sangalli & Tani 2016]
- Nonsymmetric systems [Tani 2017]
- BPX [Cho & Vásquez 2018]
- Fast diagonalization [Montardini et al. 2019]
- Space-time IGA [Hofer *et al.* 2019]
- Schwarz methods [Cho 2020]
- Directional splitting [Calo et al. 2021]
- Kronecker product [Loli et al. 2021]

h-multigrid techniques

- Full multigrid [Hofreither 2016]
- THB-splines [Hofreither et al. 2017]
- Symbol-based [Donatelli 2017]
- Boundary correction [Hofreither et al. 2017]
- Subspace corrected mass smoother [Takacs 2017]
- Multiplicative Schwarz smoother [de la Riva 2018]
- Biharmonic equation [Sogn et al. 2019]
- Immersed IGA [de Prenter et al. 2020]
- Bilaplacian equation [de la Riva et al. 2020]
- (Non-)conforming multipatch [Takacs 2020]

Direct solvers

- Performance study [Collier et al. 2012]
- Refined IGA [Garcia et al. 2018]

Preconditioning techniques

- Schwarz methods [da Veiga et al. 2012 & 2013]
- Sylvester equation [Sangalli & Tani 2016]
- Nonsymmetric systems [Tani 2017]
- BPX [Cho & Vásquez 2018]
- Fast diagonalization [Montardini et al. 2019]
- Space-time IGA [Hofer et al. 2019]
- Schwarz methods [Cho 2020]
- Directional splitting [Calo et al. 2021]
- Kronecker product [Loli et al. 2021]

p-multigrid techniques

- (Block-)ILUT smoother [Tielen et al. 2018, 2020]
- Multiplicative Schwarz smoother [de la Riva 2020]

h-multigrid techniques

- Full multigrid [Hofreither 2016]
- THB-splines [Hofreither et al. 2017]
- Symbol-based [Donatelli 2017]
- Boundary correction [Hofreither et al. 2017]
- Subspace corrected mass smoother [Takacs 2017]
- Multiplicative Schwarz smoother [de la Riva 2018]
- Biharmonic equation [Sogn et al. 2019]
- Immersed IGA [de Prenter et al. 2020]
- Bilaplacian equation [de la Riva et al. 2020]
- (Non-)conforming multipatch [Takacs 2020]

Direct solvers

- Performance study [Collier et al. 2012]
- Refined IGA [Garcia et al. 2018]

Preconditioning techniques

- Schwarz methods [da Veiga et al. 2012 & 2013]
- Sylvester equation [Sangalli & Tani 2016]
- Nonsymmetric systems [Tani 2017]
- BPX [Cho & Vásquez 2018]
- Fast diagonalization [Montardini et al. 2019]
- Space-time IGA [Hofer et al. 2019]
- Schwarz methods [Cho 2020]
- Directional splitting [Calo et al. 2021]
- Kronecker product [Loli et al. 2021]

p-multigrid techniques

- (Block-)ILUT smoother [Tielen et al. 2018, 2020]
- Multiplicative Schwarz smoother [de la Riva 2020]

h-multigrid techniques

- Full multigrid [Hofreither 2016]
- THB-splines [Hofreither et al. 2017]
- Symbol-based [Donatelli 2017]
- Boundary correction [Hofreither et al. 2017]
- Subspace corrected mass smoother [Takacs 2017]
- Multiplicative Schwarz smoother [de la Riva 2018]
- Biharmonic equation [Sogn et al. 2019]
- Immersed IGA [de Prenter et al. 2020]
- Bilaplacian equation [de la Riva et al. 2020]
- (Non-)conforming multipatch [Takacs 2020]

Transient problems

- Parallel splitting solvers [Puzyrev et al. 2019]
- Space-time solvers [Langer et al 2016]
- Space-time solvers [Loli et al. 2020]
- Space-time least-squares [Montardini et al. 2020]
- MGRIT-IGA [Tielen et al. 2021]

Direct solvers

- Performance study [Collier et al. 2012]
- Refined IGA [Garcia et al. 2018]

Preconditioning techniques

- Schwarz methods [da Veiga et al. 2012 & 2013]
- Sylvester equation [Sangalli & Tani 2016]
- Nonsymmetric systems [Tani 2017]
- BPX [Cho & Vásquez 2018]
- Fast diagonalization [Montardini et al. 2019]
- Space-time IGA [Hofer et al. 2019]
- Schwarz methods [Cho 2020]
- Directional splitting [Calo et al. 2021]
- Kronecker product [Loli et al. 2021]

p-multigrid techniques

- (Block-)ILUT smoother [Tielen et al. 2018, 2020]
- Multiplicative Schwarz smoother [de la Riva 2020]

h-multigrid techniques

- Full multigrid [Hofreither 2016]
- THB-splines [Hofreither et al. 2017]
- Symbol-based [Donatelli 2017]
- Boundary correction [Hofreither et al. 2017]
- Subspace corrected mass smoother [Takacs 2017]
- Multiplicative Schwarz smoother [de la Riva 2018]
- Biharmonic equation [Sogn et al. 2019]
- Immersed IGA [de Prenter et al. 2020]
- Bilaplacian equation [de la Riva et al. 2020]
- (Non-)conforming multipatch [Takacs 2020]

Transient problems

- Parallel splitting solvers [Puzyrev et al. 2019]
- Space-time solvers [Langer et al 2016]
- Space-time solvers [Loli et al. 2020]
- Space-time least-squares [Montardini et al. 2020]
- MGRIT-IGA [Tielen et al. 2021]

Outline

1 Motivation and problem formulations

2 Part I: Multigrid methods for IGA

Introduction to h- and p-multigrid ILUT smoother for single-patch IGA Block-ILUT smoother for multi-patch IGA

3 Part II: Multigrid reduction in time (MGRIT) Introduction to MGRIT MGRIT-IGA

4 Conclusions

Model problems

Part I: Convection-diffusion-reaction equation (CDR-Eq)

$$\begin{split} -\nabla \cdot (\mathbb{D}\nabla u(\mathbf{x})) + \mathbf{v} \cdot \nabla u(\mathbf{x}) + ru(\mathbf{x}) &= f & \mathbf{x} \in \Omega \\ u(\mathbf{x}) &= g & \mathbf{x} \in \Gamma \end{split}$$

Part II: Heat equation (Heat-Eq)

$$\partial_t u(\mathbf{x}, t) - \kappa \Delta u(\mathbf{x}, t) = f \qquad \mathbf{x} \in \Omega, \ t \in [0, T]$$
$$u(\mathbf{x}, t) = g \qquad \mathbf{x} \in \Gamma, \ t \in [0, T]$$
$$u(\mathbf{x}, 0) = u^0(\mathbf{x}) \qquad \mathbf{x} \in \Omega$$

d-dimensional connected Lipschitz domain $\Omega \subset \mathbb{R}^d$, its boundary $\Gamma = \partial \Omega$, load vector $f \in L^2(\Omega)$, Dirichlet boundary conditions g, diffusion tensor \mathbb{D} and coefficient κ , resp., divergence-free velocity field \mathbf{v} , source term r, and u^0 initial conditions

Variational formulation

CDR-Eq: Find $u \in \mathcal{H}^1_q(\Omega)$ such that

$$a(w,u) = l(w)$$
 $\forall w \in \mathcal{H}_0^1(\Omega)$

Heat-Eq: Given $u^n\in \mathcal{H}^1_g(\Omega)$ find $u^{n+1}\in \mathcal{H}^1_g(\Omega)$ such that

$$\langle w, u^{n+1} \rangle + \Delta t \, k(w, u^{n+1}) = \langle w, u^n \rangle + l(w) \qquad \forall w \in \mathcal{H}^1_0(\Omega)$$

Variational formulation

CDR-Eq: Find $u \in \mathcal{H}^1_g(\Omega)$ such that

$$a(w,u) = l(w)$$
 $\forall w \in \mathcal{H}_0^1(\Omega)$

Heat-Eq: Given $u^n \in \mathcal{H}^1_g(\Omega)$ find $u^{n+1} \in \mathcal{H}^1_g(\Omega)$ such that

$$\langle w, u^{n+1} \rangle + \Delta t \, k(w, u^{n+1}) = \langle w, u^n \rangle + l(w) \qquad \forall w \in \mathcal{H}^1_0(\Omega)$$

with (bi-)linear forms defined as

Algebraic equations

CDR-Eq: Find $u_{h,p} \in \mathcal{V}_{h,p}$ such that

$$\mathbf{A}_{h,p} \mathbf{u}_{h,p} = \mathbf{f}_{h,p}$$

Heat-Eq: Find $u_{h,p}^{n+1} \in \mathcal{V}_{h,p}$ such that

$$\left[\mathbf{M}_{h,p} + \Delta t \mathbf{K}_{h,p}\right] \mathbf{u}_{h,p}^{n+1} = \mathbf{M}_{h,p} \mathbf{u}_{h,p}^{n} + \mathbf{f}_{h,p}$$

Algebraic equations

CDR-Eq: Find $u_{h,p} \in \mathcal{V}_{h,p}$ such that

$$\mathbf{A}_{h,p} \mathbf{u}_{h,p} = \mathbf{f}_{h,p}$$

Heat-Eq: Find $u_{h,p}^{n+1} \in \mathcal{V}_{h,p}$ such that

$$[\mathbf{M}_{h,p} + \Delta t \mathbf{K}_{h,p}] \mathbf{u}_{h,p}^{n+1} = \mathbf{M}_{h,p} \mathbf{u}_{h,p}^{n} + \mathbf{f}_{h,p}$$

The unknown solution vector is given by

 $u_{h,p}^n = \sum_{j=1}^{N_b} \mathbf{u}_j^n \varphi_j(\mathbf{x}), \quad \text{where } \mathbf{u}_j^n \text{ is the basis coefficient corresponding to } \varphi_j \in \mathcal{V}_{h,p}$

Algebraic equations

CDR-Eq: Find $u_{h,p} \in \mathcal{V}_{h,p}$ such that

$$\mathbf{A}_{h,p} \mathbf{u}_{h,p} = \mathbf{f}_{h,p}$$

Heat-Eq: Find $u_{h,p}^{n+1} \in \mathcal{V}_{h,p}$ such that

$$[\mathbf{M}_{h,p} + \Delta t \mathbf{K}_{h,p}] \mathbf{u}_{h,p}^{n+1} = \mathbf{M}_{h,p} \mathbf{u}_{h,p}^{n} + \mathbf{f}_{h,p}$$

The unknown solution vector is given by

$$u_{h,p}^n = \sum_{j=1}^{N_b} \, \mathbf{u}_j^n \varphi_j(\mathbf{x}), \quad \text{where } \, \mathbf{u}_j^n \text{ is the basis coefficient corresponding to } \varphi_j \in \mathcal{V}_{h,p}$$

and the system matrices and right-hand side vector are defined as

$$\mathbf{A}_{h,p} = \{ a(\varphi_i, \varphi_j) \}_{i,j}, \quad \mathbf{K}_{h,p} = \{ k(\varphi_i, \varphi_j) \}_{i,j}, \quad \mathbf{M}_{h,p} = \{ \langle \varphi_i, \varphi_j \rangle \}_{i,j}, \quad \mathbf{f}_{h,p} = \{ l(\varphi_i) \}_i$$

Ansatz spaces

FEA: element-wise 'pull-back'

$$\mathcal{V}_{h,p} = \{ v \in C^0(\bar{\Omega}) : v|_{T_k} \in \mathbb{Q}_p \circ F_k^{-1}, \, \forall T_k \in \mathcal{T}_h \\ v|_{\Gamma} = 0 \}$$

with \mathbb{Q}_p the space of polynomials of degree p or less

Ansatz spaces

FEA: element-wise 'pull-back'

$$\mathcal{V}_{h,p} = \{ v \in C^0(\bar{\Omega}) : v|_{T_k} \in \mathbb{Q}_p \circ F_k^{-1}, \, \forall T_k \in \mathcal{T}_h \\ v|_{\Gamma} = 0 \}$$

with \mathbb{Q}_p the space of polynomials of degree p or less

IGA: patch-wise 'pull-back'

 $\mathcal{V}_{h,p} = \operatorname{span}\{\hat{\varphi}_j \circ F_\ell^{-1}\}$

with \hat{arphi}_j the j^{th} B-spline basis function

Ansatz spaces

FEA: element-wise 'pull-back'

$$\mathcal{V}_{h,p} = \{ v \in C^0(\bar{\Omega}) : v|_{T_k} \in \mathbb{Q}_p \circ F_k^{-1}, \, \forall T_k \in \mathcal{T}_h \\ v|_{\Gamma} = 0 \}$$

with \mathbb{Q}_p the space of polynomials of degree p or less

IGA: patch-wise 'pull-back'

 $\mathcal{V}_{h,p} = \operatorname{span}\{\hat{\varphi}_j \circ F_\ell^{-1}\}$

with $\hat{\varphi}_j$ the j^{th} B-spline basis function

Think of IGA patches as macro elements

B-spline illustration taken from: H.Nguyen-XuanaLoc et al., DOI: 10.1016/j.tafmec.2014.07.008

Condition number

From: P. Gervasio, L. Dedè, O. Chanon, and A. Quarteroni, DOI: 10.1007/s10915-020-01204-1

Sparsity pattern: 2d single patch, p = 1

TUDelft

Sparsity pattern: 2d single patch, p = 2

Sparsity pattern: 2d single patch, p = 3

ŤUDelft

Sparsity pattern: 2d multi-patch IGA- C^{p-1} , ref_h = 3

Four-patch geometry with C^0 coupling of conforming degrees of freedom.

Sparsity pattern: 2d multi-patch IGA- C^{p-1} , ref_h = 3

Four-patch geometry with C^0 coupling of conforming degrees of freedom.

Sketch of our solution strategy

- Coarsening in p reduces the stencil but not so much the number of unknowns
 - *p*-multigrid with *direct* projection $\mathcal{V}_{h,p} \searrow \mathcal{V}_{h,1}$
 - note that spaces are not nested $(\mathcal{V}_{h,p} \not\supset \mathcal{V}_{h,p-1} \not\supset \dots)$
 - ILUT smoother at single-patch level

Sketch of our solution strategy

- Coarsening in p reduces the stencil but not so much the number of unknowns
 - *p*-multigrid with *direct* projection $\mathcal{V}_{h,p} \searrow \mathcal{V}_{h,1}$
 - note that spaces are not nested $(\mathcal{V}_{h,p}
 ot \supset \mathcal{V}_{h,p-1}
 ot \supset \dots)$
 - ILUT smoother at single-patch level
- For p = 1, IGA- C^0 reduces to FEA with Lagrange finite elements
 - h-multigrid with established smoothers and coarse-grid solvers

Sketch of our solution strategy

- Coarsening in p reduces the stencil but not so much the number of unknowns
 - *p*-multigrid with *direct* projection $\mathcal{V}_{h,p} \searrow \mathcal{V}_{h,1}$
 - note that spaces are not nested $(\mathcal{V}_{h,p} \not\supseteq \mathcal{V}_{h,p-1} \not\supseteq \dots)$
 - ILUT smoother at single-patch level
- For p = 1, IGA- C^0 reduces to FEA with Lagrange finite elements
 - h-multigrid with established smoothers and coarse-grid solvers
- Exploit the block structure of multi-patch topologies by using a block-ILUT smoother

Sketch of our solution strategy

- Coarsening in p reduces the stencil but not so much the number of unknowns
 - *p*-multigrid with *direct* projection $\mathcal{V}_{h,p} \searrow \mathcal{V}_{h,1}$
 - note that spaces are not nested $(\mathcal{V}_{h,p} \not\supseteq \mathcal{V}_{h,p-1} \not\supseteq \dots)$
 - ILUT smoother at single-patch level
- For p = 1, IGA- C^0 reduces to FEA with Lagrange finite elements
 - *h*-multigrid with established smoothers and coarse-grid solvers
- Exploit the block structure of multi-patch topologies by using a *block*-ILUT smoother
 - robust with respect to h, p, N_p , and 'the PDE'
 - computational efficient throughout all problem sizes
 - applicable to locally refined THB-splines
 - good spatial solver for transient problems (Part II)

The complete multigrid cycle

1. Starting from $u_{h,p}^{(0,0)}$ apply u_1 pre-smoothing steps:

$$\mathbf{u}_{h,p}^{(0,m)} := \mathbf{u}_{h,p}^{(0,m-1)} + \mathbf{S}_{h,p} \left(\mathbf{f}_{h,p} - \mathbf{A}_{h,p} \mathbf{u}_{h,p}^{(0,m-1)} \right), \quad m = 0, 1, \dots, \nu_1$$

1. Starting from $\mathbf{u}_{h,p}^{(0,0)}$ apply ν_1 pre-smoothing steps:

$$\mathbf{u}_{h,p}^{(0,m)} := \mathbf{u}_{h,p}^{(0,m-1)} + \mathbf{S}_{h,p} \left(\mathbf{f}_{h,p} - \mathbf{A}_{h,p} \,\mathbf{u}_{h,p}^{(0,m-1)} \right), \quad m = 0, 1, \dots, \nu_1$$

2. Restrict the residual onto $\mathcal{V}_{h,1}$:

$$\mathbf{r}_{h,1} = \mathbf{I}_{h,p}^{h,1} \left(\mathbf{f}_{h,p} - \mathbf{A}_{h,p} \mathbf{u}_{h,p}^{(0,\nu_1)} \right), \quad \mathbf{I}_{h,p}^{h,1} := \mathbf{M}_{h,1}^{-1} \mathbf{M}_{h,p,1}$$

with $M_{h,p,1} = \{(\varphi_i, \psi_j)\}_{i,j}$, where $\varphi_i \in \mathcal{V}_{h,p}$ and $\psi_j \in \mathcal{V}_{h,1}$

1. Starting from $u_{h,p}^{(0,0)}$ apply ν_1 pre-smoothing steps:

$$\mathbf{u}_{h,p}^{(0,m)} := \mathbf{u}_{h,p}^{(0,m-1)} + \mathbf{S}_{h,p} \left(\mathbf{f}_{h,p} - \mathbf{A}_{h,p} \,\mathbf{u}_{h,p}^{(0,m-1)} \right), \quad m = 0, 1, \dots, \nu_1$$

2. Restrict the residual onto $\mathcal{V}_{h,1}$:

$$\mathbf{r}_{h,1} = \mathbf{I}_{h,p}^{h,1} \left(\mathbf{f}_{h,p} - \mathbf{A}_{h,p} \mathbf{u}_{h,p}^{(0,\nu_1)} \right), \quad \mathbf{I}_{h,p}^{h,1} := \mathbf{M}_{h,1}^{-1} \mathbf{M}_{h,p,1}$$

with $M_{h,p,1} = \{(\varphi_i, \psi_j)\}_{i,j}$, where $\varphi_i \in \mathcal{V}_{h,p}$ and $\psi_j \in \mathcal{V}_{h,1}$

3. Solve the residual equation with an h-multigrid method:

 $\mathbf{A}_{h,1} \mathbf{e}_{h,1} = \mathbf{r}_{h,1}$

1. Starting from $u_{h,p}^{(0,0)}$ apply ν_1 pre-smoothing steps:

$$\mathbf{u}_{h,p}^{(0,m)} := \mathbf{u}_{h,p}^{(0,m-1)} + \mathbf{S}_{h,p} \left(\mathbf{f}_{h,p} - \mathbf{A}_{h,p} \,\mathbf{u}_{h,p}^{(0,m-1)} \right), \quad m = 0, 1, \dots, \nu_1$$

2. Restrict the residual onto $\mathcal{V}_{h,1}$:

$$\mathbf{r}_{h,1} = \mathbf{I}_{h,p}^{h,1} \left(\mathbf{f}_{h,p} - \mathbf{A}_{h,p} \mathbf{u}_{h,p}^{(0,\nu_1)} \right), \quad \mathbf{I}_{h,p}^{h,1} := \mathbf{M}_{h,1}^{-1} \mathbf{M}_{h,p,1}$$

with $M_{h,p,1} = \{(\varphi_i, \psi_j)\}_{i,j}$, where $\varphi_i \in \mathcal{V}_{h,p}$ and $\psi_j \in \mathcal{V}_{h,1}$

3. Solve the residual equation with an *h*-multigrid method:

$$\mathbf{A}_{h,1} \mathbf{e}_{h,1} = \mathbf{r}_{h,1}$$

4. Project the error onto $\mathcal{V}_{h,p}$ and update the solution:

$$\mathbf{u}_{h,p}^{(0,\nu_1)} := \mathbf{u}_{h,p}^{(0,\nu_1)} + \mathbf{I}_{h,1}^{h,p} (\mathbf{e}_{h,1}), \quad \mathbf{I}_{h,1}^{h,p} := \mathbf{M}_{h,p}^{-1} \mathbf{M}_{h,1,p}$$

1. Starting from $u_{h,p}^{(0,0)}$ apply ν_1 pre-smoothing steps:

$$\mathbf{u}_{h,p}^{(0,m)} := \mathbf{u}_{h,p}^{(0,m-1)} + \mathbf{S}_{h,p} \left(\mathbf{f}_{h,p} - \mathbf{A}_{h,p} \,\mathbf{u}_{h,p}^{(0,m-1)} \right), \quad m = 0, 1, \dots, \nu_1$$

2. Restrict the residual onto $\mathcal{V}_{h,1}$:

$$\mathbf{r}_{h,1} = \mathbf{I}_{h,p}^{h,1} \left(\mathbf{f}_{h,p} - \mathbf{A}_{h,p} \mathbf{u}_{h,p}^{(0,\nu_1)} \right), \quad \mathbf{I}_{h,p}^{h,1} := \mathbf{M}_{h,1}^{-1} \mathbf{M}_{h,p,1}$$

with $M_{h,p,1} = \{(\varphi_i, \psi_j)\}_{i,j}$, where $\varphi_i \in \mathcal{V}_{h,p}$ and $\psi_j \in \mathcal{V}_{h,1}$

3. Solve the residual equation with an h-multigrid method:

$$\mathbf{A}_{h,1} \mathbf{e}_{h,1} = \mathbf{r}_{h,1}$$

4. Project the error onto $\mathcal{V}_{h,p}$ and update the solution:

$$\mathbf{u}_{h,p}^{(0,\nu_1)} := \mathbf{u}_{h,p}^{(0,\nu_1)} + \mathbf{I}_{h,1}^{h,p} (\mathbf{e}_{h,1}), \quad \mathbf{I}_{h,1}^{h,p} := \mathbf{M}_{h,p}^{-1} \mathbf{M}_{h,1,p}$$

5. Apply ν_2 post-smoothing steps as in 1. to obtain $u_{h,p}^{(1,0)} := u_{h,p}^{(0,\nu_1+\nu_2)}$ and repeat steps 1.-5. until $\|\mathbf{r}_{h,p}^{(k)}\| < \operatorname{tol} \|\mathbf{r}_{h,p}^{(0)}\|$ for some tolerance parameter tol.

1. Starting from $u_{h,p}^{(0,0)}$ apply ν_1 pre-smoothing steps:

$$\mathbf{u}_{h,p}^{(0,m)} := \mathbf{u}_{h,p}^{(0,m-1)} + \mathbf{S}_{h,p} \left(\mathbf{f}_{h,p} - \mathbf{A}_{h,p} \,\mathbf{u}_{h,p}^{(0,m-1)} \right), \quad m = 0, 1, \dots, \nu_1$$

2. Restrict the residual onto $\mathcal{V}_{h,1}$:

$$\mathbf{r}_{h,1} = \mathbf{I}_{h,p}^{h,1} \left(\mathbf{f}_{h,p} - \mathbf{A}_{h,p} \, \mathbf{u}_{h,p}^{(0,
u_1)}
ight), \quad \mathbf{I}_{h,p}^{h,1} := \mathbf{M}_{h,1}^{-1} \, \mathbf{M}_{h,p,1} \quad \text{mass lumping}$$

with $M_{h,p,1} = \{(\varphi_i, \psi_j)\}_{i,j}$, where $\varphi_i \in \mathcal{V}_{h,p}$ and $\psi_j \in \mathcal{V}_{h,1}$

3. Solve the residual equation with an h-multigrid method:

$$\mathbf{A}_{h,1} \mathbf{e}_{h,1} = \mathbf{r}_{h,1}$$

4. Project the error onto $\mathcal{V}_{h,p}$ and update the solution:

$$\mathbf{u}_{h,p}^{(0,\nu_1)} := \, \mathbf{u}_{h,p}^{(0,\nu_1)} + \, \mathbf{I}_{h,1}^{h,p} \left(\, \mathbf{e}_{h,1} \right), \quad \mathbf{I}_{h,1}^{h,p} := \, \mathbf{M}_{h,p}^{-1} \, \mathbf{M}_{h,1,p} \quad \mathsf{mass lumping (B-splines!)}$$

5. Apply ν_2 post-smoothing steps as in 1. to obtain $u_{h,p}^{(1,0)} := u_{h,p}^{(0,\nu_1+\nu_2)}$ and repeat steps 1.-5. until $\|\mathbf{r}_{h,p}^{(k)}\| < \operatorname{tol} \|\mathbf{r}_{h,p}^{(0)}\|$ for some tolerance parameter tol.

1. Starting from $u_{h,p}^{(0,0)}$ apply ν_1 pre-smoothing steps:

$$\mathbf{u}_{h,p}^{(0,m)} := \mathbf{u}_{h,p}^{(0,m-1)} + \mathbf{S}_{h,p} \left(\mathbf{f}_{h,p} - \mathbf{A}_{h,p} \,\mathbf{u}_{h,p}^{(0,m-1)} \right), \quad m = 0, 1, \dots, \nu_1$$

2. Restrict the residual onto $\mathcal{V}_{h,1}$:

$$\mathbf{r}_{h,1} = \mathbf{I}_{h,p}^{h,1} \left(\mathbf{f}_{h,p} - \mathbf{A}_{h,p} \, \mathbf{u}_{h,p}^{(0,
u_1)}
ight), \quad \mathbf{I}_{h,p}^{h,1} := \, \mathbf{M}_{h,1}^{-1} \, \mathbf{M}_{h,p,1} \quad \text{mass lumping}$$

with $M_{h,p,1} = \{(\varphi_i, \psi_j)\}_{i,j}$, where $\varphi_i \in \mathcal{V}_{h,p}$ and $\psi_j \in \mathcal{V}_{h,1}$

3. Solve the residual equation with an h-multigrid method:

$$\mathbf{A}_{h,1} \mathbf{e}_{h,1} = \mathbf{r}_{h,1}$$

4. Project the error onto $\mathcal{V}_{h,p}$ and update the solution:

$$\mathbf{u}_{h,p}^{(0,
u_1)} := \, \mathbf{u}_{h,p}^{(0,
u_1)} + \, \mathbf{I}_{h,1}^{h,p} \left(\, \mathbf{e}_{h,1}
ight), \quad \mathbf{I}_{h,1}^{h,p} := \, \mathbf{M}_{h,p}^{-1} \, \mathbf{M}_{h,1,p} \quad \mathsf{mass \ lumping \ (B-splines!)}$$

5. Apply ν_2 post-smoothing steps as in 1. to obtain $u_{h,p}^{(1,0)} := u_{h,p}^{(0,\nu_1+\nu_2)}$ and repeat steps 1.-5. until $\|\mathbf{r}_{h,p}^{(k)}\| < \operatorname{tol} \|\mathbf{r}_{h,p}^{(0)}\|$ for some tolerance parameter tol.

3.1. Starting from $u_{h,1}^{(k,0)}$ apply ν_1 pre-smoothing steps:

$$\mathbf{u}_{h,1}^{(k,m)} := \mathbf{u}_{h,1}^{(k,m-1)} + \mathbf{S}_{h,1} \left(\mathbf{f}_{h,1} - \mathbf{A}_{h,1} \, \mathbf{u}_{h,1}^{(k,m-1)} \right), \quad m = 0, 1, \dots, \nu_1$$

3.2. Restrict the residual onto $\mathcal{V}_{2h,1}$:

$$\mathbf{r}_{2h,1} = \mathbf{I}_{h,1}^{2h,1} \left(\mathbf{f}_{h,1} - \mathbf{A}_{h,1} \mathbf{u}_{h,1}^{(k,\nu_1)} \right), \quad \mathbf{I}_{h,1}^{2h,1} \text{ linear interpolation}$$

3.3. Solve the residual equation by applying h-multigrid recursively or the coarse-grid solver:

$$A_{2h,1} e_{2h,1} = r_{2h,1}$$

3.4. Project the error onto $\mathcal{V}_{h,1}$ and update the solution:

$$\mathbf{u}_{h,1}^{(k,\nu_1)} := \mathbf{u}_{h,1}^{(k,\nu_1)} + \mathbf{I}_{2h,1}^{h,1} \left(\mathbf{e}_{2h,1} \right), \quad \mathbf{I}_{2h,1}^{h,1} := \frac{1}{2} \left(\mathbf{I}_{h,1}^{2h,1} \right)^{\top}$$

3.5. Apply ν_2 post-smoothing steps as in 3.1. to obtain $u_{h,1}^{(k+1,0)} := u_{h,1}^{(k,\nu_1+\nu_2)}$ and repeat steps 3.1.–3.5. according to the *h*-multigrid cycle (V- or W-cycle).

Multigrid components

	h-multigrid	<i>p</i> -multigrid
restriction operator	$\mathbf{I}_{h,1}^{2h,1}$ linear interpolation	$\mathbf{I}_{h,1}^{h,p} := \mathbf{M}_{h,p}^{-1}\mathbf{M}_{h,1,p}$
prolongation operator	$\mathbf{I}_{2h,1}^{h,1} := \frac{1}{2} \left(\mathbf{I}_{h,1}^{2h,1} \right)^{\top}$	$\mathbf{I}_{h,p}^{h,1} := \mathbf{M}_{h,1}^{-1} \mathbf{M}_{h,p,1}$

Multigrid components

	h-multigrid	<i>p</i> -multigrid				
restriction operator	$\mathbf{I}_{h,1}^{2h,1}$ linear interpolation	$\mathbf{I}_{h,1}^{h,p} := \mathbf{M}_{h,p}^{-1}\mathbf{M}_{h,1,p}$				
prolongation operator	$\mathbf{I}_{2h,1}^{h,1} := \frac{1}{2} \left(\mathbf{I}_{h,1}^{2h,1} ight)^{ op}$	$\mathbf{I}_{h,p}^{h,1} := \mathbf{M}_{h,1}^{-1}\mathbf{M}_{h,p,1}$				
smoothing operator	incomplete LU factorization of $A_{h,p} \approx L_{h,p} U_{h,p}$, where all elements smaller than 10^{-13} are dropped and the amount of non-zero entries per row are kept constant					

Y. Saad, ILUT: A dual threshold incomplete LU factorization, DOI: 10.1002/nla.1680010405

Multigrid components

	h-multigrid	p-multigrid				
restriction operator	$\mathbf{I}_{h,1}^{2h,1}$ linear interpolation	$\mathbf{I}_{h,1}^{h,p} := \mathbf{M}_{h,p}^{-1} \mathbf{M}_{h,1,p}$				
prolongation operator	$\mathbf{I}_{2h,1}^{h,1} := \frac{1}{2} \left(\mathbf{I}_{h,1}^{2h,1} \right)^{\top}$	$\mathbf{I}_{h,p}^{h,1} := \mathbf{M}_{h,1}^{-1}\mathbf{M}_{h,p,1}$				
smoothing operator	incomplete LU factorization all elements smaller than amount of non-zero entrie	on of $A_{h,p} \approx L_{h,p} U_{h,p}$, whereby 10^{-13} are dropped and the es per row are kept constant				
$A_{h,p}$ operator	rediscretization					

Y. Saad, ILUT: A dual threshold incomplete LU factorization, DOI: 10.1002/nla.1680010405

Spectrum of the iteration matrix: Poisson on quarter annulus, p=2

Spectrum of the iteration matrix: Poisson on quarter annulus, p = 3

Spectrum of the iteration matrix: Poisson on quarter annulus, p = 4

Numerical examples

#1: Poisson's equation on a quarter annulus domain with radii 1 and 2

	p=2		p =	3	p =	4	p = 5		
	ILUT	GS	ILUT	GS	ILUT	GS	ILUT	GS	
$h = 2^{-6}$	4	30	3	62	3	176	3	491	
$h = 2^{-7}$	4	29	3	61	3	172	3	499	
$h = 2^{-8}$	5	30	3	60	3	163	3	473	
$h = 2^{-9}$	5	32	3	61	3	163	3	452	

Numerical examples

#2: CDR equation with
$$\mathbb{D} = \begin{pmatrix} 1.2 & -0.7 \\ -0.4 & 0.9 \end{pmatrix}$$
, $\mathbf{v} = (0.4, -0.2)^{\top}$, and $r = 0.3$ on the unit square domain

	p=2		p =	3	p =	4	p = 5		
	ILUT	GS	ILUT	GS	ILUT	GS	ILUT	GS	
$h = 2^{-6}$	5	_	3	—	3	_	4	_	
$h = 2^{-7}$	5	_	3	—	4	_	4	_	
$h = 2^{-8}$	5	_	3	_	3	_	4	_	
$h = 2^{-9}$	5	_	4	—	3	_	4	_	

Computational efficiency: p- vs. h-multigrid

Comparison with *h*-multigrid method with subspace corrected mass smoother [Takacs, 2017]

Computational efficiency: p- vs. h-multigrid

Comparison with *h*-multigrid method with subspace corrected mass smoother [Takacs, 2017]

Computational efficiency: $\{h, p\}$ -multigrid + $\{ILUT, SCMS\}$ -smoother

Numerical examples: THB splines

#3: Poisson's equation on the unit square domain

	p=2		p =	3	p =	4	p = 5		
	ILUT	GS	ILUT	GS	ILUT	GS	ILUT	GS	
$h = 2^{-4}$	6	17	8	47	7	177	10	1033	
$h = 2^{-5}$	6	16	7	44	8	182	7	923	
$h = 2^{-6}$	6	17	5	43	6	201	12	1009	

Block ILUT

Exact LU decomposition of the block matrix $\, \mathrm{A}$

$$\begin{bmatrix} A_{11} & & A_{\Gamma 1} \\ & \ddots & & \vdots \\ & & A_{N_pN_p} & A_{\Gamma N_p} \\ A_{1\Gamma} & \cdots & A_{N_p\Gamma} & A_{\Gamma\Gamma} \end{bmatrix} = \begin{bmatrix} L_1 & & & \\ & \ddots & & \\ & & L_{N_p} \\ B_1 & \cdots & B_{N_p} & I \end{bmatrix} \begin{bmatrix} U_1 & & C_1 \\ & \ddots & & \vdots \\ & & U_{N_p} & C_{N_p} \\ & & & S \end{bmatrix},$$

with

$$A_{\ell\ell} = L_\ell U_\ell, \qquad B_\ell = A_{\ell\Gamma} U_\ell^{-1}, \qquad C_\ell = L_\ell^{-1} A_{\Gamma\ell}, \qquad S = A_{\Gamma\Gamma} - \sum_{\ell=1}^{N_p} B_\ell C_\ell$$

Block ILUT

Approximate LU decomposition of the block matrix A

$$\begin{bmatrix} A_{11} & & A_{\Gamma 1} \\ & \ddots & & \vdots \\ & & A_{N_pN_p} & A_{\Gamma N_p} \\ A_{1\Gamma} & \cdots & A_{N_p\Gamma} & A_{\Gamma\Gamma} \end{bmatrix} \approx \begin{bmatrix} \tilde{L}_1 & & & \\ & \ddots & & \\ & & \tilde{L}_{N_p} & \\ \tilde{B}_1 & \cdots & \tilde{B}_{N_p} & I \end{bmatrix} \begin{bmatrix} \tilde{U}_1 & & \tilde{C}_1 \\ & \ddots & & \vdots \\ & & \tilde{U}_{N_p} & \tilde{C}_{N_p} \\ & & & \tilde{S} \end{bmatrix},$$

with

$$A_{\ell\ell} = L_{\ell} U_{\ell}, \qquad B_{\ell} = A_{\ell\Gamma} U_{\ell}^{-1}, \qquad C_{\ell} = L_{\ell}^{-1} A_{\Gamma\ell}, \qquad S = A_{\Gamma\Gamma} - \sum_{\ell=1}^{N_p} B_{\ell} C_{\ell}$$

Let us replace L_{ℓ} and U_{ℓ} by their (local) ILUT factorizations (compute in parallel!)

$$\mathbf{A}_{\ell\ell} \approx \tilde{\mathbf{L}}_{\ell} \tilde{\mathbf{U}}_{\ell}, \qquad \tilde{\mathbf{B}}_{\ell} = \mathbf{A}_{\ell\Gamma} \tilde{\mathbf{U}}_{\ell}^{-1}, \qquad \tilde{\mathbf{C}}_{\ell} = \tilde{\mathbf{L}}_{\ell}^{-1} \mathbf{A}_{\Gamma\ell}, \qquad \tilde{\mathbf{S}} = \mathbf{A}_{\Gamma\Gamma} - \sum_{\ell=1}^{N_p} \tilde{\mathbf{B}}_{\ell} \tilde{\mathbf{C}}_{\ell}$$

I.C.L. Nievinski et al. Parallel implementation of a two-level algebraic ILU(k)-based domain decomposition preconditioner, TEMA (São Carlos) 19(1), Jan-Apr 2018

Numerical examples: *Block-ILUT vs. global ILUT*

#1: Poisson's equation on the quarter annulus domain with radii 1 and 2

	p = 2		p = 3			p = 4			p = 5			
	# patches			# patches			# patches			# patches		
	4	16	64	4	16	64	4	16	64	4	16	64
$h = 2^{-5}$	3(5)	4(7)	4(9)	3(5)	3(7)	4(11)	2(4)	2(6)	4(-)	2(4)	2(6)	-(-)
$h = 2^{-6}$	3(5)	3(5)	4(7)	3(5)	3(7)	4(10)	3(6)	2(7)	3(11)	3(5)	3(7)	3(10)
$h = 2^{-7}$	3(5)	3(5)	3(5)	3(5)	3(6)	3(8)	3(5)	2(6)	3(10)	-(5)	6(7)	3(11)

Numbers in parentheses correspond to global ILUT

R. Tielen *et al.* A block ILUT smoother for multipatch geometries in Isogeometric Analysis, To appear in: Springer INdAM Series, Springer, 2021

Numerical examples: Block-ILUT vs. global ILUT

#2: CDR equation with
$$\mathbb{D} = \begin{pmatrix} 1.2 & -0.7 \\ -0.4 & 0.9 \end{pmatrix}$$
, $\mathbf{v} = (0.4, -0.2)^{\top}$, and $r = 0.3$ on the unit square domain

	p = 2		p = 3			p = 4			p = 5			
	# patches			# patches			# patches			# patches		
	4	16	64	4	16	64	4	16	64	4	16	64
$h = 2^{-5}$	4(6)	4(8)	7(11)	3(6)	3(9)	5(15)	2(6)	3(8)	5(15)	2(5)	2(7)	4(14)
$h = 2^{-6}$	4(6)	4(7)	5(8)	3(6)	3(8)	4(10)	3(7)	3(9)	4(13)	3(7)	3(8)	3(13)
$h = 2^{-7}$	4(6)	4(6)	4(7)	3(6)	3(7)	3(8)	2(7)	3(7)	3(10)	4(6)	3(8)	3(12)

Numbers in parentheses correspond to global ILUT

R. Tielen *et al.* A block ILUT smoother for multipatch geometries in Isogeometric Analysis, To appear in: Springer INdAM Series, Springer, 2021

Numerical examples: Block-ILUT vs. global ILUT

#4: Poisson's equation on the Yeti footprint

	p=2		p =	= 3	p =	= 4	p = 5		
	block	global	block	global	block	global	block	global	
$h = 2^{-3}$	4	5	2	4	2	4	2	4	
$h = 2^{-4}$	4	8	3	5	3	5	2	4	
$h = 2^{-5}$	4	8	3	6	3	5	3	5	

R. Tielen *et al.* A block ILUT smoother for multipatch geometries in Isogeometric Analysis, To appear in: Springer INdAM Series, Springer, 2021

Outline

1 Motivation and problem formulations

2 Part I: Multigrid methods for IGA

Introduction to h- and p-multigrid ILUT smoother for single-patch IGA Block-ILUT smoother for multi-patch IGA

3 Part II: Multigrid reduction in time (MGRIT) Introduction to MGRIT MGRIT-IGA

4 Conclusions

- robust with respect to h, p, N_p , and 'the PDE'
- computational efficient throughout all problem sizes
- applicable to locally refined THB-splines
- Good spatial solver for transient problems (Part II)

Part II: Multigrid reduction in time (MGRIT)

S. Friedhoff, et al. A Multigrid-in-Time Algorithm for Solving Evolution Equations in Parallel, $16^{\rm th}$ Copper Mountain Conference on Multigrid Methods 2013

Sketch of the MGRIT algorithm

Heat-Eq: Find $u_{h,p}^{n+1} \in \mathcal{V}_{h,p}$ such that

$$\left[\mathbf{M}_{h,p} + \Delta t_F \mathbf{K}_{h,p}\right] \mathbf{u}_{h,p}^{n+1} = \mathbf{M}_{h,p} \mathbf{u}_{h,p}^{n} + \mathbf{f}_{h,p}$$

S. Friedhoff, et al. A Multigrid-in-Time Algorithm for Solving Evolution Equations in Parallel, $16^{\rm th}$ Copper Mountain Conference on Multigrid Methods 2013

Sketch of the MGRIT algorithm

Heat-Eq: Find $u_{h,p}^{n+1} \in \mathcal{V}_{h,p}$ such that

$$[M_{h,p} + \Delta t_F K_{h,p}] u_{h,p}^{n+1} = M_{h,p} u_{h,p}^{n} + f_{h,p}$$

Writing out the above two-level scheme for all time levels yields

$$\mathbf{A}_{h,p} \mathbf{U}_{h,p} = \begin{bmatrix} \mathbf{I}_{h,p} & & & \\ -\Psi_{h,p} \mathbf{M}_{h,p} & \mathbf{I}_{h,p} & & \\ & \ddots & \ddots & \\ & & -\Psi_{h,p} \mathbf{M}_{h,p} & \mathbf{I}_{h,p} \end{bmatrix} \begin{bmatrix} \mathbf{u}_{h,p}^{0} \\ \mathbf{u}_{h,p}^{1} \\ \vdots \\ \mathbf{u}_{h,p}^{N_{t}} \end{bmatrix} = \Delta t_{F} \begin{bmatrix} \Psi_{h,p} \mathbf{f}_{h,p} \\ \Psi_{h,p} \mathbf{f}_{h,p} \\ \vdots \\ \Psi_{h,p} \mathbf{f}_{h,p} \end{bmatrix}$$

with

$$\Psi_{h,p} = [\mathbf{M}_{h,p} + \Delta t_F \mathbf{K}_{h,p}]^{-1}$$

S. Friedhoff, et al. A Multigrid-in-Time Algorithm for Solving Evolution Equations in Parallel, $16^{\rm th}$ Copper Mountain Conference on Multigrid Methods 2013

Reordering of $A_{h,p}$ into (F)ine and (C)oarse time levels yields

$$\begin{bmatrix} \mathbf{A}_{FF} & \mathbf{A}_{FC} \\ \mathbf{A}_{CF} & \mathbf{A}_{CC} \end{bmatrix} = \begin{bmatrix} \mathbf{I}_F & \mathbf{0} \\ \mathbf{A}_{CF} \mathbf{A}_{FF}^{-1} & \mathbf{I}_C \end{bmatrix} \begin{bmatrix} \mathbf{A}_{FF} & \mathbf{0} \\ \mathbf{0} & \mathbf{S} \end{bmatrix} \begin{bmatrix} \mathbf{I}_F & \mathbf{A}_{FF}^{-1} \mathbf{A}_{FC} \\ \mathbf{0} & \mathbf{I}_C \end{bmatrix}$$

TUDelft

S. Friedhoff, et al. A Multigrid-in-Time Algorithm for Solving Evolution Equations in Parallel, $16^{\rm th}$ Copper Mountain Conference on Multigrid Methods 2013

Reordering of $A_{h,p}$ into (F)ine and (C)oarse time levels yields

$$\begin{bmatrix} \mathbf{A}_{FF} & \mathbf{A}_{FC} \\ \mathbf{A}_{CF} & \mathbf{A}_{CC} \end{bmatrix} = \begin{bmatrix} \mathbf{I}_F & \mathbf{0} \\ \mathbf{A}_{CF} \mathbf{A}_{FF}^{-1} & \mathbf{I}_C \end{bmatrix} \begin{bmatrix} \mathbf{A}_{FF} & \mathbf{0} \\ \mathbf{0} & \mathbf{S} \end{bmatrix} \begin{bmatrix} \mathbf{I}_F & \mathbf{A}_{FF}^{-1} \mathbf{A}_{FC} \\ \mathbf{0} & \mathbf{I}_C \end{bmatrix}$$

with block-diagonal fine-level system matrix

$$\mathbf{A}_{FF} = \mathbf{I}_{N_t/m, N_t/m} \otimes \underbrace{\begin{pmatrix} \mathbf{I}_{h,p} & & \\ -\Psi_{h,p} \mathbf{M}_{h,p} & \mathbf{I}_{h,p} & & \\ & \ddots & \ddots & \\ & & -\Psi_{h,p} \mathbf{M}_{h,p} & \mathbf{I}_{h,p} \end{pmatrix}}_{m \times m \text{ blocks}}$$

S. Friedhoff, et al. A Multigrid-in-Time Algorithm for Solving Evolution Equations in Parallel, $16^{\rm th}$ Copper Mountain Conference on Multigrid Methods 2013

Reordering of $A_{h,p}$ into (F)ine and (C)oarse time levels yields

$$\begin{bmatrix} \mathbf{A}_{FF} & \mathbf{A}_{FC} \\ \mathbf{A}_{CF} & \mathbf{A}_{CC} \end{bmatrix} = \begin{bmatrix} \mathbf{I}_F & \mathbf{0} \\ \mathbf{A}_{CF} \mathbf{A}_{FF}^{-1} & \mathbf{I}_C \end{bmatrix} \begin{bmatrix} \mathbf{A}_{FF} & \mathbf{0} \\ \mathbf{0} & \mathbf{S} \end{bmatrix} \begin{bmatrix} \mathbf{I}_F & \mathbf{A}_{FF}^{-1} \mathbf{A}_{FC} \\ \mathbf{0} & \mathbf{I}_C \end{bmatrix}$$

with block-diagonal fine-level system matrix

$$\mathbf{A}_{FF} = \mathbf{I}_{N_t/m, N_t/m} \otimes \underbrace{\begin{pmatrix} \mathbf{I}_{h,p} & & \\ -\Psi_{h,p} \mathbf{M}_{h,p} & \mathbf{I}_{h,p} & & \\ & \ddots & \ddots & \\ & & -\Psi_{h,p} \mathbf{M}_{h,p} & \mathbf{I}_{h,p} \end{pmatrix}}_{m \times m \text{ blocks}}$$

and the Schur complement $S = A_{CC} - A_{CF} A_{FF}^{-1} A_{FC}$

S. Friedhoff, et al. A Multigrid-in-Time Algorithm for Solving Evolution Equations in Parallel, 16th Copper Mountain Conference on Multigrid Methods 2013

Approximate the Schur complement

$$\mathbf{S} = \begin{bmatrix} \mathbf{I} & & & \\ -(\Psi_{h,p} \,\mathbf{M}_{h,p})^m & \mathbf{I} & & \\ & \ddots & \ddots & \\ & & -(\Psi_{h,p} \,\mathbf{M}_{h,p})^m & \mathbf{I} \end{bmatrix} \approx \begin{bmatrix} \mathbf{I} & & & \\ -\Phi_{h,p} \,\mathbf{M}_{h,p} & \mathbf{I} & & \\ & \ddots & \ddots & \\ & & -\Phi_{h,p} \,\mathbf{M}_{h,p} & \mathbf{I} \end{bmatrix}$$

with *coarse integrator*

$$\Phi_{h,p} = [\mathbf{M}_{h,p} + \Delta t_C \mathbf{K}_{h,p}]^{-1}$$

S. Friedhoff, et al. A Multigrid-in-Time Algorithm for Solving Evolution Equations in Parallel, $16^{\rm th}$ Copper Mountain Conference on Multigrid Methods 2013
The MGRIT-IGA V-cycle

MGRIT-IGA implementation

 $\ensuremath{\textbf{G+Smo:}}$ Geometry plus Simulation Modules

- open-source cross-platform IGA library written in C++
- dimension-independent code development using templates
- building on Eigen C++ library for linear algebra

XBraid: Parallel Multigrid in Time

- open-source implementation of the optimal-scaling multigrid solver in MPI/C with C++ interface
- extendable by overloading callback functions

Try it yourself

https://github.com/gismo/gismo/tree/xbraid/extensions/gsXBraid

Numerical examples: Strong scaling of MGRIT-IGA

#5: Heat-Eq with $h = 2^{-6}$ spatial resolution solved for $N_t = 10.000$ time steps with backward Euler method on 128 Xeon Gold 6130 CPUs (2.10GHz, 96GB, 16 cores)

R. Tielen et al. 2021, arXiv:2107.05337

Numerical examples: Speed-up of MGRIT-IGA

#5: Heat-Eq with $h = 2^{-6}$ spatial resolution solved for $N_t = 10.000$ time steps with backward Euler method on 128 Xeon Gold 6130 CPUs (2.10GHz, 96GB, 16 cores)

R. Tielen et al. 2021, arXiv:2107.05337

Numerical examples: Weak scaling of MGRIT-IGA

#5: Heat-Eq with $h = 2^{-6}$ spatial resolution solved for $N_t = \text{cores}/64 \cdot 1.000$ time steps with backward Euler method on 128 Xeon Gold 6130 CPUs (2.10GHz, 96GB, 16 cores)

R. Tielen et al. 2021, arXiv:2107.05337

Do we really need *p*-multigrid or would a standard solver be good enough?

Do we really need p-multigrid or would a standard solver be good enough? No!

fuDelft

Do we really need p-multigrid or would a standard solver be good enough? No!

Conclusion

MGRIT-IGA + *p*-multigrid with (block-)ILUT smoother

- robust with respect to h, p, N_p , and 'the PDE'
- computational efficient throughout all problem sizes
- applicable to locally refined THB-splines
- good strong and weak scaling in no. of cores and N_t

Conclusion

MGRIT-IGA + *p*-multigrid with (block-)ILUT smoother

- robust with respect to h, p, N_p , and 'the PDE'
- computational efficient throughout all problem sizes
- applicable to locally refined THB-splines
- good strong and weak scaling in no. of cores and N_t

What's next?

- MGRIT-IGA with THB-splines and adaptive refinement in time
- extension to nonlinear PDEs and higher-order time integrators

Further reading

R.Tielen, M. Möller, D. Göddeke and C. Vuik: *p-multigrid methods and their comparison to h-multigrid methods within Isogeometric Analysis*, Computer Methods in Applied Mechanics and Engineering, Vol 372 (2020)

R. Tielen, M. Möller and C. Vuik: A block ILUT smoother for multipatch geometries in Isogeometric Analysis, In: Springer INdAM Series, Springer, 2021

R. Tielen, M. Möller and C. Vuik: *Multigrid Reduced in Time for Isogeometric Analysis*, Submitted to: Proceedings of the Young Investigators Conference 2021.

R. Tielen, M. Möller and C. Vuik: *Combining p-multigrid and multigrid reduced in time methods to obtain a scalable solver for Isogeometric Analysis*, arXiv:2107.05337

Thank you for your attention!

