IgaNets: Physics-Informed Machine Learning Embedded Into Isogeometric Analysis

Matthias Möller
Department of Applied Mathematics
Delft University of Technology, The Netherlands
KOLLOQUIUM ÜBER NEUERE ARBEITEN AUF DEM GEBIETE DER MECHANIK UND STRÖMUNGSLEHRE an der Technischen Universität Wien
Joint work with Deepesh Toshniwal and Frank van Ruiten

About

Associate Professor of Numerical Analysis

- Doctorate from TU Dortmund in 2008
- Started working at TU Delft in 2013

Research interests

- Finite element and isogeometric analysis
- Adaptive high-resolution schemes for flow problems
- Fast solution techniques for (non-)linear problems
- Quantum and high-performance computing
- Scientific machine learning

The IGA team (open position on IGA-FSI)

Hugo Verhelst (TUD)

Ye Ji (CSC)

Vijai Kumar (TUD)

Roel Tielen
(ASML)

Jochen Hinz Andrzej Jaeschke (EPFL) (Łódź)

The Quantum team (open positions to come)

Merel Schalkers (TUD)

Giorgio Tosti
(TUD)

Koen Mesman Swapan Venkata (TUD) (TUD)

Philip Wurzner (TUD)

Research results

Research results

Motivation

FDM, FVM, FEM, BEM, IGA, ...

PINNs, DeepONets, FourierNets, ...

VS.

Motivation

FDM, FVM, FEM, BEM, IGA, ...

> PINNs, DeepONets, FourierNets, ...

Common misconceptions

- "Method a is/is not as accurate as method b"
- "Method a is x-times faster/slower than method b "

Motivation

FDM, FVM, FEM, BEM, IGA,

B sound mathematical foundation
B established engineering workflows
R no cost amortization over multiple runs, no real-time capability

PINNs, DeepONets, FourierNets,

\checkmark fast evaluation (costly training!)
B inclusion of (measurement) data
β lack of convergence theory
R lack of general acceptance

Common misconceptions

- "Method a is/is not as accurate as method b"
- "Method a is x-times faster/slower than method b "

Better question to ask

- What are the specific strengths/weaknesses of the different approaches?

Motivation

FDM, FVM, FEM, BEM, IGA,
B sound mathematical foundation
B established engineering workflows

PINNs, DeepONets, FourierNets,
B fast evaluation (costly training!)
and
\checkmark inclusion of (measurement) data

Common misconceptions

- "Method a is/is not as accurate as method b"
- "Method a is x-times faster/slower than method b "

Better questions to ask

- What are the specific strengths/weaknesses of the different approaches?
- How can we combine the strengths of both classes of methods?

Motivation

FDM, FVM, FEM, BEM, IGA,
B sound mathematical foundation
B established engineering workflows

PINNs, DeepONets, FourierNets,
B fast evaluation (costly training!)
and
\checkmark inclusion of (measurement) data

Common misconceptions

- "Method a is/is not as accurate as method b"
- "Method a is x-times faster/slower than method b "

Better questions to ask

- What are the specific strengths/weaknesses of the different approaches?
- How can we combine the strengths of both classes of methods?
- What is the envisaged purpose of the new approach?

Design-through-Analysis - IGA's ultimate goal from day one on

Ted Blacker, Sandia National Laboratories

Design-through-Analysis - IGA's ultimate goal from day one on

Vision: fast interactive qualitative analysis and accurate quantitative analysis within the same computational framework with seamless switching between both approaches

[^0]
Physics-informed machine learning

PINN (Raissi et al. 2018): learns the (initial-)boundary-value problem

Physics-informed machine learning

PINN (Raissi et al. 2018): learns the (initial-)boundary-value problem

Physics-informed machine learning

PINN (Raissi et al. 2018): learns the (initial-)boundary-value problem

B easy to implement for 'any' PDE because AD magic does it for you \leftrightarrow combined un-/supervised learning poor extrapolation/generalization \& point-based approach requires re-evaluation of NN at every point
R rudimentary convergence theory

DeepONet (Lu et al. 2019): learns the differential operator $G_{\theta}(u)(y)=\sum_{k=1}^{q} \underbrace{b_{k}\left(u\left(x_{1}\right), u\left(x_{2}\right), \ldots, u\left(x_{m}\right)\right)}_{\text {branch }} \underbrace{t_{k}(y)}_{\text {trunk }}$

Physics-informed machine learning

PINN (Raissi et al. 2018): learns the (initial-)boundary-value problem

B easy to implement for 'any' PDE because AD magic does it for you \leftrightarrow combined un-/supervised learning poor extrapolation/generalization \& point-based approach requires re-evaluation of NN at every point
R rudimentary convergence theory

DeepONet (Lu et al. 2019): learns the differential operator $G_{\theta}(u)(y)=\sum_{k=1}^{q} \underbrace{b_{k}\left(u\left(x_{1}\right), u\left(x_{2}\right), \ldots, u\left(x_{m}\right)\right)}_{\text {branch }} \underbrace{t_{k}(y)}_{\text {trunk }}$ Don't we know a good basis?

B-spline basis functions

Cox de Boor recursion formula

$$
\begin{aligned}
& b_{i}^{0}(\xi)= \begin{cases}1 & \text { if } \xi_{i} \leq \xi<\xi_{i+1} \\
0 & \text { otherwise }\end{cases} \\
& b_{i}^{p}(\xi)=\frac{\xi-\xi_{i}}{\xi_{i+p}-\xi_{i}} b_{i}^{p-1}(\xi) \\
& +\frac{\xi_{i+p+1}-\xi}{\xi_{i+p+1}-\xi_{i+1}} b_{i+1}^{p-1}(\xi)
\end{aligned}
$$

B-spline basis functions

Cox de Boor recursion formula

$$
\begin{aligned}
& b_{i}^{0}(\xi)= \begin{cases}1 & \text { if } \xi_{i} \leq \xi<\xi_{i+1} \\
0 & \text { otherwise }\end{cases} \\
& b_{i}^{p}(\xi)=\frac{\xi-\xi_{i}}{\xi_{i+p}-\xi_{i}} b_{i}^{p-1}(\xi) \\
& +\frac{\xi_{i+p+1}-\xi}{\xi_{i+p+1}-\xi_{i+1}} b_{i+1}^{p-1}(\xi)
\end{aligned}
$$

Many good properties: compact support $\left[\xi_{i}, \xi_{i+p+1}\right)$, positive function values over support interval, derivatives of B-splines are combinations of lower-order B-splines, ...

Refinement techniques

Like standard finite element basis functions, Bsplines can be refined with respect to h and p :

[^1]
Refinement techniques

Like standard finite element basis functions, Bsplines can be refined with respect to h and p :

- Knot insertion (' h-refinement')

[^2]
Refinement techniques

Like standard finite element basis functions, Bsplines can be refined with respect to h and p :

- Knot insertion (' h-refinement')
- Order elevation (' p-refinement')

[^3]
Refinement techniques

Like standard finite element basis functions, Bsplines can be refined with respect to h and p :

- Knot insertion (' h-refinement')
- Order elevation (' p-refinement')

In both cases, the represented object (geometry and solution) is preserved exactly.

$$
\Xi=\{0,0,0,1,2,3,4,4,5,5,5\}
$$

$\Xi=\{0,0,0, .5,1,1.5,2,2.5$,
$3,3.5,4,4,4.5,5,5,5\}$

[^4]
Refinement techniques

Like standard finite element basis functions, Bsplines can be refined with respect to h and p :

- Knot insertion (' h-refinement')
- Order elevation (' p-refinement')

In both cases, the represented object (geometry and solution) is preserved exactly.
$\Xi=\{0,0,0,1,2,3,4,4,5,5,5\}$

$\vec{\Xi}=\{0,0,0,0,1,1,2,2$ 3,3,4,4,4,5,5,5,5\}

[^5]
Refinement techniques

Like standard finite element basis functions, Bsplines can be refined with respect to h and p :

- Knot insertion (' h-refinement')
- Order elevation (' p-refinement')

In both cases, the represented object (geometry and solution) is preserved exactly.

- k-refinement is a unique IGA feature to achieve higher order and higher continuity at the same time

(a)
(c)

[^6]
Isogeometric Analysis

Paradigm: represent 'everything' in terms of tensor products of B-spline basis functions

$$
B_{i}(\xi, \eta):=b_{i}^{p}(\xi) \cdot b_{k}^{q}(\eta), \quad i:=(k-1) \cdot n_{i}+i, \quad 1 \leq i \leq n_{i}, \quad 1 \leq k \leq n_{k},
$$

Isogeometric Analysis

Paradigm: represent 'everything' in terms of tensor products of B-spline basis functions

$$
B_{i}(\xi, \eta):=b_{i}^{p}(\xi) \cdot b_{k}^{q}(\eta), \quad i:=(k-1) \cdot n_{i}+i, \quad 1 \leq i \leq n_{i}, \quad 1 \leq k \leq n_{k},
$$

Many more good properties: partition of unity $\sum_{i=1}^{n} B_{i}(\xi, \eta) \equiv 1, C^{p-1}$ continuity, \ldots

Isogeometric Analysis

Geometry: bijective mapping from the unit square to the physical domain $\Omega_{h} \subset \mathbb{R}^{d}$

$$
\mathbf{x}_{h}(\xi, \eta)=\sum_{i=1}^{n} B_{i}(\xi, \eta) \cdot \mathbf{x}_{i} \quad \forall(\xi, \eta) \in[0,1]^{2}=: \hat{\Omega}
$$

- the shape of Ω_{h} is fully specified by the set of control points $\mathbf{x}_{i} \in \mathbb{R}^{d}$

Isogeometric Analysis

Geometry: bijective mapping from the unit square to the physical domain $\Omega_{h} \subset \mathbb{R}^{d}$

$$
\mathbf{x}_{h}(\xi, \eta)=\sum_{i=1}^{n} B_{i}(\xi, \eta) \cdot \mathbf{x}_{i} \quad \forall(\xi, \eta) \in[0,1]^{2}=: \hat{\Omega}
$$

- the shape of Ω_{h} is fully specified by the set of control points $\mathbf{x}_{i} \in \mathbb{R}^{d}$
- interior control points must be chosen such that 'grid lines' do not fold as this violates the bijectivity of $\mathbf{x}_{h}: \hat{\Omega} \rightarrow \Omega_{h}$

Isogeometric Analysis

Geometry: bijective mapping from the unit square to the physical domain $\Omega_{h} \subset \mathbb{R}^{d}$

$$
\mathbf{x}_{h}(\xi, \eta)=\sum_{i=1}^{n} B_{i}(\xi, \eta) \cdot \mathbf{x}_{i} \quad \forall(\xi, \eta) \in[0,1]^{2}=: \hat{\Omega}
$$

- the shape of Ω_{h} is fully specified by the set of control points $\mathbf{x}_{i} \in \mathbb{R}^{d}$
- interior control points must be chosen such that 'grid lines' do not fold as this violates the bijectivity of $\mathrm{x}_{h}: \hat{\Omega} \rightarrow \Omega_{h}$
- refinement in h (knot insertion) and p (order elevation) preserves the shape of Ω_{h} and can be used to generate finer computational 'grids' for the analysis

Isogeometric Analysis

Model problem: Poisson's equation

$$
-\Delta u_{h}=f_{h} \quad \text { in } \quad \Omega_{h}, \quad u_{h}=g_{h} \quad \text { on } \quad \partial \Omega_{h}
$$

with

$$
\left.\left.\begin{array}{rrr}
\text { (geometry) } & \mathbf{x}_{h}(\xi, \eta) & =\sum_{i=1}^{n} B_{i}(\xi, \eta) \cdot \mathbf{x}_{i}
\end{array} \quad \forall(\xi, \eta) \in[0,1]^{2}\right] \text { (solution) } \quad u_{h} \circ \mathbf{x}_{h}(\xi, \eta)=\sum_{i=1}^{n} B_{i}(\xi, \eta) \cdot u_{i} \quad \forall(\xi, \eta) \in[0,1]^{2}\right] \text { (r.h.s vector) } \quad f_{h} \circ \mathbf{x}_{h}(\xi, \eta)=\sum_{i=1}^{n} B_{i}(\xi, \eta) \cdot f_{i} \quad \forall(\xi, \eta) \in[0,1]^{2}
$$

(boundary conditions) $\quad g_{h} \circ \mathbf{x}_{h}(\xi, \eta)=\sum_{i=1}^{n} B_{i}(\xi, \eta) \cdot g_{i} \quad \forall(\xi, \eta) \in \partial[0,1]^{2}$

Solution approaches

- Galerkin-type IGA (Hughes et al. 2005 and many more)

$$
\int_{\Omega} \nabla w_{h}(\mathbf{x}) \cdot \nabla u_{h}(\mathbf{x}) \mathrm{d} \mathbf{x}=\int_{\Omega} w_{h}(\mathbf{x}) f_{h}(\mathbf{x}) \mathrm{d} \mathbf{x} \quad \rightarrow \quad A u=b
$$

Solution approaches

- Galerkin-type IGA (Hughes et al. 2005 and many more)

$$
\int_{\Omega} \nabla w_{h}(\mathbf{x}) \cdot \nabla u_{h}(\mathbf{x}) \mathrm{d} \mathbf{x}=\int_{\Omega} w_{h}(\mathbf{x}) f_{h}(\mathbf{x}) \mathrm{d} \mathbf{x} \quad \rightarrow \quad A u=b
$$

Solution approaches

- Galerkin-type IGA (Hughes et al. 2005 and many more)

$$
\int_{\Omega} \nabla w_{h}(\mathbf{x}) \cdot \nabla u_{h}(\mathbf{x}) \mathrm{d} \mathbf{x}=\int_{\Omega} w_{h}(\mathbf{x}) f_{h}(\mathbf{x}) \mathrm{d} \mathbf{x} \quad \rightarrow \quad A u=b
$$

- Isogeometric collocation methods (Reali, Hughes, 2015)

$$
-\Delta u_{h}\left(\boldsymbol{\tau}_{j}\right)=f_{h}\left(\boldsymbol{\tau}_{j}\right), \quad j=1, \ldots, m \quad \rightarrow \quad A u=b
$$

Solution approaches

- Galerkin-type IGA (Hughes et al. 2005 and many more)

$$
\int_{\Omega} \nabla w_{h}(\mathbf{x}) \cdot \nabla u_{h}(\mathbf{x}) \mathrm{d} \mathbf{x}=\int_{\Omega} w_{h}(\mathbf{x}) f_{h}(\mathbf{x}) \mathrm{d} \mathbf{x} \quad \rightarrow \quad A u=b
$$

- Isogeometric collocation methods (Reali, Hughes, 2015)

$$
-\Delta u_{h}\left(\boldsymbol{\tau}_{j}\right)=f_{h}\left(\boldsymbol{\tau}_{j}\right), \quad j=1, \ldots, m \quad \rightarrow \quad A u=b
$$

- Variational collocation method (Gomez, De Lorenzis, 2016)

$$
0=\int_{\Omega} B_{j}(\mathbf{x})\left[\Delta u_{h}(\mathbf{x})+f_{h}(\mathbf{x})\right] \mathrm{d} \mathbf{x}=\underbrace{\left[\Delta u_{h}\left(\boldsymbol{\tau}_{A}\right)+f_{h}\left(\boldsymbol{\tau}_{A}\right)\right]}_{=0} \int_{\Omega} B_{j}(\mathbf{x}) \mathrm{d} \mathbf{x} \quad \rightarrow \quad A u=b
$$

Solution approaches

- Galerkin-type IGA (Hughes et al. 2005 and many more)

$$
\int_{\Omega} \nabla w_{h}(\mathbf{x}) \cdot \nabla u_{h}(\mathbf{x}) \mathrm{d} \mathbf{x}=\int_{\Omega} w_{h}(\mathbf{x}) f_{h}(\mathbf{x}) \mathrm{d} \mathbf{x} \quad \rightarrow \quad A u=b
$$

- Isogeometric collocation methods (Reali, Hughes, 2015)

$$
-\Delta u_{h}\left(\boldsymbol{\tau}_{j}\right)=f_{h}\left(\boldsymbol{\tau}_{j}\right), \quad j=1, \ldots, m \quad \rightarrow \quad A u=b
$$

- Variational collocation method (Gomez, De Lorenzis, 2016)

$$
0=\int_{\Omega} B_{j}(\mathbf{x})\left[\Delta u_{h}(\mathbf{x})+f_{h}(\mathbf{x})\right] \mathrm{d} \mathbf{x}=\underbrace{\left[\Delta u_{h}\left(\boldsymbol{\tau}_{A}\right)+f_{h}\left(\boldsymbol{\tau}_{A}\right)\right]}_{=0} \int_{\Omega} B_{j}(\mathbf{x}) \mathrm{d} \mathbf{x} \quad \rightarrow \quad A u=b
$$

Isogeometric Analysis

Abstract representation

Given \mathbf{x}_{i} (geometry), f_{i} (r.h.s. vector), and g_{i} (boundary conditions), compute

$$
\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]=A^{-1}\left(\left[\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right],\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{n}
\end{array}\right]\right) \cdot b\left(\left[\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right],\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right],\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{n}
\end{array}\right]\right)
$$

Any point of the solution can afterwards be obtained by a simple function evaluation

$$
(\xi, \eta) \in[0,1]^{2} \quad \mapsto \quad u_{h} \circ \mathbf{x}_{h}(\xi, \eta)=\left[B_{1}(\xi, \eta), \ldots, B_{n}(\xi, \eta)\right] \cdot\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]
$$

Isogeometric Analysis

Abstract representation

Given \mathbf{x}_{i} (geometry), f_{i} (r.h.s. vector), and g_{i} (boundary conditions), compute

$$
\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]=A^{-1}\left(\left[\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right],\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{n}
\end{array}\right]\right) \cdot b\left(\left[\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right],\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right],\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{n}
\end{array}\right]\right)
$$

Any point of the solution can afterwards be obtained by a simple function evaluation

$$
(\xi, \eta) \in[0,1]^{2} \quad \mapsto \quad u_{h} \circ \mathbf{x}_{h}(\xi, \eta)=\left[B_{1}(\xi, \eta), \ldots, B_{n}(\xi, \eta)\right] \cdot\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]
$$

Let us interpret the sets of \mathbf{B}-spline coefficients $\left\{\mathbf{x}_{i}\right\},\left\{f_{i}\right\}$, and $\left\{g_{i}\right\}$ as an efficient encoding of our PDE problem that is fed into our IGA machinery as input.
The output of our IGA machinery are the B-spline coefficients $\left\{u_{i}\right\}$ of the solution.

Isogeometric Analysis + Physics-Informed Machine Learning
IgaNet: replace computation

$$
\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]=A^{-1}\left(\left[\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right],\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{n}
\end{array}\right]\right) \cdot b\left(\left[\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right],\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right],\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{n}
\end{array}\right]\right)
$$

Isogeometric Analysis + Physics-Informed Machine Learning
IgaNet: replace computation by physics-informed machine learning

$$
\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]=\operatorname{lgaNet}\left(\left[\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right],\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right],\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{n}
\end{array}\right] ;\left(\xi^{(k)}, \eta^{(k)}\right)_{k=1}^{N_{\text {samples }}}\right)
$$

Isogeometric Analysis + Physics-Informed Machine Learning

IgaNet: replace computation by physics-informed machine learning

$$
\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]=\operatorname{lgaNet}\left(\left[\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right],\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right],\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{n}
\end{array}\right] ;\left(\xi^{(k)}, \eta^{(k)}\right)_{k=1}^{N_{\text {samples }}}\right)
$$

Compute the solution from the trained neural network as follows

$$
u_{h}(\xi, \eta)=\left[B_{1}(\xi, \eta), \ldots, B_{n}(\xi, \eta)\right] \cdot\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right], \quad\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]=\operatorname{lgaNet}\left(\left[\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right],\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right],\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{n}
\end{array}\right]\right)
$$

IgaNet architecture (close to it but not yet)

IgaNet architecture

Loss function

$$
\begin{aligned}
& \operatorname{loss}_{\mathrm{PDE}}=\frac{\alpha}{N_{\Omega}} \sum_{k=1}^{N_{\Omega}}\left|\Delta\left[u_{h} \circ \mathbf{x}_{h}\left(\xi^{(k)}, \eta^{(k)}\right)\right]-f_{h} \circ \mathbf{x}_{h}\left(\xi^{(k)}, \eta^{(k)}\right)\right|^{2} \\
& \operatorname{loss}_{\mathrm{BDR}}=\frac{\beta}{N_{\Gamma}} \sum_{k=1}^{N_{\Gamma}}\left|u_{h} \circ \mathbf{x}_{h}\left(\xi^{(k)}, \eta^{(k)}\right)-g_{h} \circ \mathbf{x}_{h}\left(\xi^{(k)}, \eta^{(k)}\right)\right|^{2}
\end{aligned}
$$

Express derivatives with respect to physical space variables using the Jacobian J, the Hessian H and the matrix of squared first derivatives Q (Schillinger et al. 2013):

$$
\left[\begin{array}{l}
\frac{\partial^{2} B}{\partial x^{2}} \\
\frac{\partial^{2} B}{\partial x \partial y} \\
\frac{\partial^{2} B}{\partial y^{2}}
\end{array}\right]=Q^{-\top}\left(\left[\begin{array}{c}
\frac{\partial^{2} B}{\partial \xi^{2}} \\
\frac{\partial^{2} B}{\partial \xi \partial \eta} \\
\frac{\partial^{2} B}{\partial \eta^{2}}
\end{array}\right]-H^{\top} J^{-\top}\left[\begin{array}{c}
\frac{\partial B}{\partial \xi} \\
\frac{\partial B}{\partial \eta}
\end{array}\right]\right)
$$

Two-level training strategy

For $\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right] \in \mathcal{S}_{\text {geo }},\left[f_{1}, \ldots, f_{n}\right] \in \mathcal{S}_{\text {rhs }},\left[g_{1}, \ldots, g_{n}\right] \in \mathcal{S}_{\text {bcond }}$ do
For a batch of randomly sampled $\left(\xi_{k}, \eta_{k}\right) \in[0,1]^{2}$ (or the Greville abscissae) do

$$
\text { Train IgaNet }\left(\left[\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right],\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right],\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{n}
\end{array}\right] ;\left(\xi_{k}, \eta_{k}\right)_{k=1}^{N_{\text {samples }}}\right) \mapsto\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]
$$

EndFor

EndFor

Details:

- 7×7 bi-cubic tensor-product B-splines for \mathbf{x}_{h} and u_{h}, C^{2}-continuous
- TensorFlow 2.6, 7-layer neural network with 50 neurons per layer and ReLU activation function (except for output layer), Adam optimizer, 30.000 epochs, training is stopped after 3.000 epochs w/o improvement of the loss value

Test case: Poisson's equation on a variable annulus

Ongoing master thesis work of Frank van Ruiten, TU Delft

Preliminary results

Ongoing master thesis work of Frank van Ruiten, TU Delft

Preliminary results

Ongoing master thesis work of Frank van Ruiten, TU Delft

Preliminary results

Ongoing master thesis work of Frank van Ruiten, TU Delft

Preliminary results

Ongoing master thesis work of Frank van Ruiten, TU Delft

Preliminary results

Ongoing master thesis work of Frank van Ruiten, TU Delft

Let's have a look under the hood

Computational costs of PINN vs. IgaNets, implementation aspects, ...

Computational costs

Working principle of PINNs

$$
\mathbf{x} \mapsto u(\mathbf{x}):=\mathrm{NN}(\mathbf{x} ; f, g, G)=\sigma_{L}\left(\mathbf{W}_{L} \sigma\left(\ldots\left(\sigma_{1}\left(\mathbf{W}_{1} \mathbf{x}+\mathbf{b}_{1}\right)\right)\right)+\mathbf{b}_{L}\right)
$$

- use AD engine (automated chain rule) to compute derivatives, e.g., $u_{x}=\mathrm{NN}_{x}$
- use AD engine on top of AD tree (!!!) to compute gradients w.r.t. weights for training

Computational costs

Working principle of PINNs

$$
\mathbf{x} \mapsto u(\mathbf{x}):=\mathrm{NN}(\mathbf{x} ; f, g, G)=\sigma_{L}\left(\mathbf{W}_{L} \sigma\left(\ldots\left(\sigma_{1}\left(\mathbf{W}_{1} \mathbf{x}+\mathbf{b}_{1}\right)\right)\right)+\mathbf{b}_{L}\right)
$$

- use AD engine (automated chain rule) to compute derivatives, e.g., $u_{x}=\mathrm{NN}_{x}$
- use AD engine on top of AD tree (!!!) to compute gradients w.r.t. weights for training

Working principle of IgaNets

$$
\left[\mathbf{x}_{i}, f_{i}, g_{i}\right]_{i=1, \ldots, n} \mapsto\left[u_{i}\right]_{i=1, \ldots, n}:=\mathrm{NN}\left(\mathbf{x}_{i}, f_{i}, g_{i}, i=1, \ldots, n\right)
$$

- use mathematics to compute derivatives, e.g., $\nabla_{\mathbf{x}} u=\left(\sum_{i=1}^{n} \nabla_{\boldsymbol{\xi}} B_{i}(\boldsymbol{\xi}) u_{i}\right) J_{G}^{-t}$
- use AD to compute gradients w.r.t. weights for training, i.e. (illustrated in 1D)

$$
\frac{\partial\left(\mathrm{d}_{\xi}^{r} u(\xi)\right)}{\partial w_{k}}=\sum_{i=1}^{n} \frac{\partial\left(\mathrm{~d}_{\xi}^{r} b_{i}^{p} u_{i}\right)}{\partial w_{k}}=\sum_{i=1}^{n} \mathrm{~d}_{\xi}^{r+1} b^{p} \frac{\partial \xi}{\partial w_{k}} u_{i}+\sum_{i=1}^{n} \mathrm{~d}_{\xi}^{r} b_{i}^{p} \frac{\partial u_{i}}{\partial w_{k}}
$$

Towards an ML-friendly B-spline evaluation

Major computational task (illustrated in 1D)

Given sampling point $\xi \in\left[\xi_{i}, \xi_{i+1}\right)$ compute for $r \geq 0$

$$
\mathrm{d}_{\xi}^{r} u(\xi)=\left[\mathrm{d}_{\xi}^{r} b_{i-p}^{p}(\xi), \ldots, \mathrm{d}_{\xi}^{r} b_{i}^{p}(\xi)\right] \cdot \underbrace{\left[u_{i-p}, \ldots, u_{i}\right]}_{\text {network's output }}
$$

Textbook derivatives

$$
\mathrm{d}_{\xi}^{r} b_{i}^{p}(\xi)=(p-1)\left(\frac{-\mathrm{d}_{\xi}^{r-1} b_{i+1}^{p-1}(\xi)}{\xi_{i+p}-\xi_{i+1}}+\frac{\mathrm{d}_{\xi}^{r-1} b_{i}^{p-1}(\xi)}{\xi_{i+p-1}-\xi_{i}}\right)
$$

with

$$
b_{i}^{p}(\xi)=\frac{\xi-\xi_{i}}{\xi_{i+p}-\xi_{i}} b_{i}^{p-1}(\xi)+\frac{\xi_{i+p+1}-\xi}{\xi_{i+p+1}-\xi_{i+1}} b_{i+1}^{p-1}(\xi), \quad b_{i}^{0}(\xi)= \begin{cases}1 & \text { if } \xi_{i} \leq \xi<\xi_{i+1} \\ 0 & \text { otherwise }\end{cases}
$$

Towards an ML-friendly B-spline evaluation

Matrix representation of B-splines (Lyche and Morken 2011)

$$
\left[\mathrm{d}_{\xi}^{r} b_{i-p}^{p}(\xi), \ldots, \mathrm{d}_{\xi}^{r} b_{i}^{p}(\xi)\right]=\frac{p!}{(p-r)!} R_{1}(\xi) \cdots R_{p-r}(\xi) \mathrm{d}_{\xi} R_{p-r+1} \cdots \mathrm{~d}_{\xi} R_{p}
$$

with $k \times k+1$ matrices $R_{k}(\xi)$, e.g.

$$
\begin{aligned}
R_{1}(\xi) & =\left[\begin{array}{lll}
\frac{\xi_{i+1}-\xi}{\xi_{i+1}-\xi_{i}} & \frac{\xi-\xi_{i}}{\xi_{i+1}-\xi_{i}}
\end{array}\right] \\
R_{2}(\xi) & =\left[\begin{array}{ccc}
\frac{\xi_{i+1}-\xi}{\xi_{i+1}-\xi_{i-1}} & \frac{\xi-\xi_{i-1}}{\xi_{i+1}-\xi_{i-1}} & 0 \\
0 & \frac{\xi_{i+2}-\xi}{\xi_{i+2}-\xi_{i}} & \frac{\xi-\xi_{i}}{\xi_{i+2}-\xi_{i}}
\end{array}\right] \\
R_{3}(\xi) & =\ldots
\end{aligned}
$$

An ML-friendly B-spline evaluation

Algorithm 2.22 from (Lyche and Morken 2011)
(1) $\mathbf{b}=1$
(2) For $k=1, \ldots, p-r$
(1) $\mathbf{t}_{1}=\left(\xi_{i-k+1}, \ldots, \xi_{i}\right)$
(2) $\mathbf{t}_{2}=\left(\xi_{i+1}, \ldots, \xi_{i+k}\right)$
(3) $\mathbf{w}=\left(\xi-\mathbf{t}_{1}\right) \div\left(\mathbf{t}_{2}-\mathbf{t}_{1}\right)$
(4) $\mathbf{b}=[(1-\mathbf{w}) \odot \mathbf{b}, 0]+[0, \mathbf{w} \odot \mathbf{b}]$
(3) For $k=p-r+1, \ldots, p$
(1) $\mathbf{t}_{1}=\left(\xi_{i-k+1}, \ldots, \xi_{i}\right)$
(2) $\mathbf{t}_{2}=\left(\xi_{i+1}, \ldots, \xi_{i+k}\right)$
(3) $\mathbf{w}=1 \div\left(\mathbf{t}_{2}-\mathbf{t}_{1}\right)$
(4) $\mathbf{b}=[-\mathbf{w} \odot \mathbf{b}, 0]+[0, \mathbf{w} \odot \mathbf{b}]$
where \div and \odot denote the element-wise division and multiplication of vectors, respectively.

An ML-friendly B-spline evaluation

Algorithm 2.22 from (Lyche and Morken 2011) with slight modifications
(1) $\mathbf{b}=1$
(2) For $k=1, \ldots, p-r$
(1) $\mathbf{t}_{1}=\left(\xi_{i-k+1}, \ldots, \xi_{i}\right)$
(2) $\mathbf{t}_{21}=\left(\xi_{i+1}, \ldots, \xi_{i+k}\right)-\mathbf{t}_{1}$
(3) mask $=\left(\mathrm{t}_{21}<\mathrm{tol}\right)$
(4) $\mathbf{w}=\left(\xi-\mathbf{t}_{1}-\right.$ mask $) \div\left(\mathbf{t}_{21}\right.$ - mask $)$
(5) $\mathbf{b}=[(1-\mathbf{w}) \odot \mathbf{b}, 0]+[0, \mathbf{w} \odot \mathbf{b}]$
(3) For $k=p-r+1, \ldots, p$
(1) $\mathbf{t}_{1}=\left(\xi_{i-k+1}, \ldots, \xi_{i}\right)$
(2) $\mathbf{t}_{21}=\left(\xi_{i+1}, \ldots, \xi_{i+k}\right)-\mathbf{t}_{1}$
(3) mask $=\left(\mathrm{t}_{21}<\mathrm{tol}\right)$
(4) $\mathbf{w}=(1$ - mask $) \div\left(\mathbf{t}_{21}\right.$ - mask $)$
(5) $\mathbf{b}=[-\mathbf{w} \odot \mathbf{b}, 0]+[0, \mathbf{w} \odot \mathbf{b}]$
where \div and \odot denote the element-wise division and multiplication of vectors, respectively.

Performance evaluation - univariate B-splines

\square Tesla V100S PCle 32G AMD EPYC 7402 24-Core Processor \quad reference

Performance evaluation - bivariate B-splines

\square Tesla V100S PCle 32G AMD EPYC 7402 24-Core Processor \quad reference

Performance evaluation - trivariate B-splines

\square Tesla V100S PCle 32G AMD EPYC 7402 24-Core Processor \quad reference

Performance evaluation - univariate B-splines

Conclusion and outlook

IgaNets combine classical numerics with physics-informed machine learning and may finally enable integrated and interactive design-through-analysis workflows

WIP/What's next

- interactive modelling \& visualization
- extension to multi-patch topologies
- use of IGA and IgaNets in concert
- transfer learning upon basis refinement
- theoretical foundation \& error analysis

Short paper: Möller, Toshniwal, van Ruiten: Physics-informed machine learning embedded into isogeometric analysis, 2021. 䆄

Journal paper and code release in preparation

IgaNets: Physics-Informed Machine Learning
 Embedded Into Isogeometric Analysis

Matthias Möller
Department of Applied Mathematics
Delft University of Technology, The Netherlands
KOLLOQUIUM ÜBER NEUERE ARBEITEN AUF DEM GEBIETE DER MECHANIK UND STRÖMUNGSLEHRE an der Technischen Universität Wien
Joint work with Deepesh Toshniwal and Frank van Ruiten

IgaNets: Physics-Informed Machine Learning Embedded Into Isogeometric Analysis

Matthias Möller
Department of Applied Mathematics
Delft University of Technology, The Netherlands
KOLLOQUIUM ÜBER NEUERE ARBEITEN AUF DEM GEBIETE DER MECHANIK UND STRÖMUNGSLEHRE an der Technischen Universität Wien
Joint work with Deepesh Toshniwal and Frank van Ruiten
Thank you very much!

[^0]: Photo: Siemens - Simulation for Design Engineers

[^1]: J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs, Isogeometric Analysis. Towards Integration of CAD and FEA.

[^2]: J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs, Isogeometric Analysis. Towards Integration of CAD and FEA.

[^3]: J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs, Isogeometric Analysis. Towards Integration of CAD and FEA.

[^4]: J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs, Isogeometric Analysis. Towards Integration of CAD and FEA.

[^5]: J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs, Isogeometric Analysis. Towards Integration of CAD and FEA.

[^6]: J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs, Isogeometric Analysis. Towards Integration of CAD and FEA.

