
IgaNets: Physics-Informed Machine Learning
Embedded Into Isogeometric Analysis

Matthias Möller

Department of Applied Mathematics
Delft University of Technology, The Netherlands

KOLLOQUIUM ÜBER NEUERE ARBEITEN AUF DEM
GEBIETE DER MECHANIK UND STRÖMUNGSLEHRE

an der Technischen Universität Wien

Joint work with Deepesh Toshniwal and Frank van Ruiten

1 / 34



About
Associate Professor of Numerical Analysis

• Doctorate from TU Dortmund in 2008
• Started working at TU Delft in 2013

Research interests
• Finite element and isogeometric analysis
• Adaptive high-resolution schemes for flow problems
• Fast solution techniques for (non-)linear problems
• Quantum and high-performance computing
• Scientific machine learning

2 / 34



The IGA team (open position on IGA-FSI)

Hugo Verhelst
(TUD)

Ye Ji
(CSC)

Vijai Kumar
(TUD)

Roel Tielen
(ASML)

Jochen Hinz
(EPFL)

Andrzej Jaeschke
(Łódź)

The Quantum team (open positions to come)

Merel Schalkers
(TUD)

Giorgio Tosti
(TUD)

Arne Wulff
(TUD)

Koen Mesman
(TUD)

Swapan Venkata
(TUD)

Philip Wurzner
(TUD)

3 / 34



Research results

4 / 34



Research results

4 / 34



Motivation
FDM, FVM, FEM, BEM, IGA, ...

 sound mathematical foundation
 established engineering workflows
 no cost amortization over multiple

runs, no real-time capability

vs.

PINNs, DeepONets, FourierNets, ...

 fast evaluation (costly training!)
 inclusion of (measurement) data
 lack of convergence theory
 lack of general acceptance

Common misconceptions
• “Method a is/is not as accurate as method b”
• “Method a is x-times faster/slower than method b”

Better question to ask
• What are the specific strengths/weaknesses of the different approaches?

• How can we combine the strengths of both classes of methods?
• What is the envisaged purpose of the new approach?
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Design-through-Analysis — IGA’s ultimate goal from day one on

following examples may be mentioned: shell buckling analysis is
very sensitive to geometric imperfections, boundary layer phe-
nomena and lift and drag are sensitive to precise geometry of aero-
dynamic and hydrodynamic configurations, and sliding contact
between bodies cannot be accurately represented without precise
geometric descriptions. Automatic adaptive mesh refinement has
not been as widely adopted in industry as one might assume from

the extensive academic literature because mesh refinement re-
quires access to the exact geometry, and thus it also requires seam-
less and automatic communication with CAD, which simply does
not exist. Without accurate geometry and mesh adaptivity, conver-
gence and -precision results are in many cases impossible.

Deficiencies in current engineering analysis procedures also
preclude successful application of important pace setting technol-

Fig. 1. Engineering designs are becoming increasingly complex. As the number of parts comprising an object increases, so too does the amount of time required for it to be
manufactured. Such growth in complexity makes analysis a time consuming and expensive endeavor. (Courtesy of General Dynamics/Electric Boat Corporation.)

Fig. 2. Estimation of the relative time costs of each component of the model generation and analysis process at Sandia National Laboratories. Note that the process of building
the model completely dominates the time spent performing analysis. (Courtesy of Ted Blacker, Sandia National Laboratories.)

�

Ted Blacker, Sandia National Laboratories
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Design-through-Analysis — IGA’s ultimate goal from day one on

Vision: fast interactive qualitative analysis and accurate quantitative analysis within the
same computational framework with seamless switching between both approaches

Photo: Siemens – Simulation for Design Engineers
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Physics-informed machine learning

PINN (Raissi et al. 2018): learns the (initial-)boundary-value problem

 easy to implement for ‘any‘ PDE
because AD magic does it for you

 combined un-/supervised learning
 poor extrapolation/generalization
 point-based approach requires

re-evaluation of NN at every point
 rudimentary convergence theory

DeepONet (Lu et al. 2019): learns the differential operator

Gθ(u)(y) =
q∑

k=1
bk(u(x1), u(x2), . . . , u(xm))︸ ︷︷ ︸

branch

tk(y)︸ ︷︷ ︸
trunk

Don’t we know a good basis?
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B-spline basis functions

Cox de Boor recursion formula

knot vector Ξ = [0, 1, 2, 3, 4]

b0
i (ξ) =

{
1 if ξi ≤ ξ < ξi+1
0 otherwise

bp
i (ξ) = ξ − ξi

ξi+p − ξi
bp−1

i (ξ)

+ ξi+p+1 − ξ

ξi+p+1 − ξi+1
bp−1

i+1 (ξ)

Many good properties: compact support [ξi, ξi+p+1), positive function values over
support interval, derivatives of B-splines are combinations of lower-order B-splines, ...
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Refinement techniques
Like standard finite element basis functions, B-
splines can be refined with respect to h and p:

• Knot insertion (‘h-refinement’)
• Order elevation (‘p-refinement’)

In both cases, the represented object (geome-
try and solution) is preserved exactly.

• k-refinement is a unique IGA feature to
achieve higher order and higher
continuity at the same time

J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs, Isogeometric Analysis. Towards Integration of CAD and FEA.
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Figure 2.19 Knot insertion. Control points are denoted by . The knots, which define a mesh by
partitioning the curve into elements, are denoted by .

Cottrell, J. A., Hughes, T. J. R., & Bazilevs, Y. (2009). Isogeometric analysis : Toward integration of cad and fea. ProQuest Ebook Central <a
         onclick=window.open('http://ebookcentral.proquest.com','_blank') href='http://ebookcentral.proquest.com' target='_blank' style='cursor: pointer;'>http://ebookcentral.proquest.com</a>
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Figure 2.21 Order elevation. Control points are denoted by . The knots, which define a mesh by
partitioning the curve into elements, are denoted by .

across element boundaries, order elevation coincides exactly with the traditional notion of
p-refinement. Knot insertion and order elevation, however, provide us with more to work with
than do the two standard notions of refinement.

As mentioned above, we can insert new knot values with multiplicities equal to one to define
new elements across whose boundaries functions will be C p−1. We can also repeat existing
knot values to lower the continuity of the basis across existing element boundaries. This makes
knot insertion a more flexible process than simple h-refinement. Similarly, we have a more
flexible higher-order refinement as well. It stems from the fact that the processes of order
elevation and knot insertion do not commute. If a unique knot value, ξ̄ , is inserted between

Cottrell, J. A., Hughes, T. J. R., & Bazilevs, Y. (2009). Isogeometric analysis : Toward integration of cad and fea. ProQuest Ebook Central <a
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Ξ = {0, 0, 0, 1, 2, 3, 4, 4, 5, 5, 5} Ξ̄ = {0, 0, 0, .5, 1, 1.5, 2, 2.5,
3, 3.5, 4, 4, 4.5, 5, 5, 5}

Original curve and control points Refined curve and control points

Refined ten element meshOriginal five element mesh

0,0,0 1 2 3 4,4 5,5,5
0

1

0,0,0 0.5 1 1.5 2 2.5 3 3.5 4,4 4.5 5,5,5
0

1

New basis functionsOriginal basis functions

Figure 2.20 Knot insertion. Control points are denoted by . The knots, which define a mesh by
partitioning the curve into elements, are denoted by . Each element has been evenly split in the
parametric domain.

mesh, and basis functions of the unrefined curve are shown on the left. A new knot is inserted
at ξ̄ = 0.5. The new curve, shown on the right, is geometrically and parametrically identical
to the original curve, but the control points are changed, the mesh is partitioned, and the basis
is richer. There is one more control point, one more element, and one more basis function than
in the unrefined case. This process may be repeated to enrich the solution space by adding
more basis functions of the same order while leaving the curve unchanged. Figure 2.20 shows
the more advanced case of a global refinement of the curve from Figure 2.10.

Insertion of new knot values clearly has similarities with the classical h-refinement strategy
in finite element analysis as it splits existing elements into new ones. It differs, however, in the
number of new functions that are created, as well as in the continuity of the basis across the
newly created element boundaries (C p−1 in this case). To perfectly replicate h-refinement, one
would need to insert each of the new knot values p times so that the functions will be C0 across

Cottrell, J. A., Hughes, T. J. R., & Bazilevs, Y. (2009). Isogeometric analysis : Toward integration of cad and fea. ProQuest Ebook Central <a
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Ξ = {0, 0, 0, 1, 2, 3, 4, 4, 5, 5, 5} Ξ̄ = {0, 0, 0, 0, 1, 1, 2, 2,
3, 3, 4, 4, 4, 5, 5, 5, 5}

Original curve and control points Refined curve and control points

Refined five element meshOriginal five element mesh
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Figure 2.22 Order elevation. Control points are denoted by . The knots, which define a mesh by
partitioning the curve into elements, are denoted by . Note the increased multiplicity of internal knots.
This is done to preserve discontinuities in the appropriate derivatives of the curve.

two distinct knot values in a curve of order p, the number of continuous derivatives of the
basis functions at ξ̄ is p − 1. If we subsequently elevate the order to q, the multiplicity of
every distinct knot value (including the knot just inserted) is increased so that discontinuities
in the pth derivative of the basis are preserved. That is, the basis still has p − 1 continuous
derivatives at ξ̄ , although the polynomial order is now q. If, instead, we elevated the order of
the original, coarsest curve to q and only then inserted the unique knot value ξ̄ , the basis would
have q − 1 continuous derivatives at ξ̄ . We refer to this latter procedure as k-refinement. We
know of no analogous practice in standard finite element analysis.

It is important that we point out that this notion of k-refinement is not the same as the
“k-convergence” described in Kagan et al., 1998 in which the position of the knots is altered.
It bears more in common with the “k-version finite element method” of Surana et al., 2002 in
that k refers to continuity, but the motivations are different. The increased continuity in Surana
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Isogeometric Analysis
Paradigm: represent ‘everything’ in terms of tensor products of B-spline basis functions

Bi(ξ, η) := bp
i (ξ) · bq

k(η), i := (k − 1) · ni + i, 1 ≤ i ≤ ni, 1 ≤ k ≤ nk,

2.2. A short introduction on NURBS functions

A knot vector N ¼ n1; n2; . . . ; nnþpþ1
! "

is defined as a sequence of
knot value ni 2; i ¼ 1; . . . ;nþ p. An open knot, i.e, the first and the
last knots are repeated p + 1 times, is used. A B-spline basis
function forms C1 continuous inside a knot span and Cp#1 contin-
uous at a single knot. The B-spline basis functions are constructed
by the following recursion formula

Ni;pðnÞ ¼
n# ni

niþp # ni
Ni;p#1ðnÞ þ

niþpþ1 # n
niþpþ1 # niþ1

Niþ1;p#1ðnÞ

with p > 0 ð14Þ

with p = 0,

Ni;0ðnÞ ¼
1 if ni 6 n < niþ1

0 otherwise

#
ð15Þ

Two-dimensional B-spline basis functions are defined by the
tensor product of basis functions in two parametric dimensions n
and g with two knot vectors N ¼ n1; n2 . . . ; nnþpþ1

$ %
and

H ¼ g1;g2 . . . ;gmþqþ1

n o
as

NAðn;gÞ ¼ Ni;pðnÞMj;qðgÞ ð16Þ

Fig. 1 illustrates the set of one-dimensional and two-dimen-
sional B-spline basis functions.

To model exactly curved geometries (e.g. circles, cylinders,
spheres, etc.), each control point A has additional value called an
individual weight fA. We denote Non-uniform Rational B-splines
(NURBS) functions which are expressed as

RA n;gð Þ ¼ NAfAPm&n
A NA n;gð ÞfA

ð17Þ

It is evident that the B-spline function is obtained when the
individual weight of the control points is constant.

2.3. Extended isogeometric finite elements

The idea of XFEM is to introduce physical functions with a priori
knowledge of the problem field to the approximation [14]. The
basic difference between XFEM and FEM is that the former involves
the solution of the additional parameters blended to the approxi-
mation by the partition of unity. Similar to the enrichment
functions used in XFEM, the XIGA velocity field of the cracked
solids can be expressed as

_uhðxÞ ¼
X

I2S
NI xð Þ _qI þ

X

J2Sc

NJ xð Þ H xð Þ # H xJ
& '& '

_aJ

þ
X

K2St

NK xð Þ
X4

a¼1

Fa xð Þ # Fa xKð Þð Þ _ba
K ð18Þ

Fig. 1. 1D and 2D B-spline basis functions.

Fig. 2. Illustration of enriched control points for a quadratic NURBS net.

H. Nguyen-Xuan et al. / Theoretical and Applied Fracture Mechanics 72 (2014) 13–27 15

bp
i (ξ) bq

k(η)

Bi(ξ, η)

Many more good properties: partition of unity
n∑

i=1
Bi(ξ, η) ≡ 1, Cp−1 continuity, ...
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individual weight of the control points is constant.

2.3. Extended isogeometric finite elements

The idea of XFEM is to introduce physical functions with a priori
knowledge of the problem field to the approximation [14]. The
basic difference between XFEM and FEM is that the former involves
the solution of the additional parameters blended to the approxi-
mation by the partition of unity. Similar to the enrichment
functions used in XFEM, the XIGA velocity field of the cracked
solids can be expressed as

_uhðxÞ ¼
X

I2S
NI xð Þ _qI þ

X

J2Sc

NJ xð Þ H xð Þ # H xJ
& '& '

_aJ

þ
X

K2St

NK xð Þ
X4

a¼1

Fa xð Þ # Fa xKð Þð Þ _ba
K ð18Þ

Fig. 1. 1D and 2D B-spline basis functions.

Fig. 2. Illustration of enriched control points for a quadratic NURBS net.

H. Nguyen-Xuan et al. / Theoretical and Applied Fracture Mechanics 72 (2014) 13–27 15

bp
i (ξ) bq

k(η)

Bi(ξ, η)

Many more good properties: partition of unity
n∑

i=1
Bi(ξ, η) ≡ 1, Cp−1 continuity, ...
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Isogeometric Analysis
Geometry: bijective mapping from the unit square to the physical domain Ωh ⊂ Rd

xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · xi ∀(ξ, η) ∈ [0, 1]2 =: Ω̂

• the shape of Ωh is fully specified by the
set of control points xi ∈ Rd

• interior control points must be chosen
such that ‘grid lines’ do not fold as this
violates the bijectivity of xh : Ω̂ → Ωh

• refinement in h (knot insertion) and p
(order elevation) preserves the shape of
Ωh and can be used to generate finer
computational ‘grids’ for the analysis
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Isogeometric Analysis
Model problem: Poisson’s equation

−∆uh = fh in Ωh, uh = gh on ∂Ωh

with

(geometry) xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · xi ∀(ξ, η) ∈ [0, 1]2

(solution) uh ◦ xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · ui ∀(ξ, η) ∈ [0, 1]2

(r.h.s vector) fh ◦ xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · fi ∀(ξ, η) ∈ [0, 1]2

(boundary conditions) gh ◦ xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · gi ∀(ξ, η) ∈ ∂[0, 1]2
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Solution approaches
• Galerkin-type IGA (Hughes et al. 2005 and many more)∫

Ω
∇wh(x) · ∇uh(x) dx =

∫
Ω

wh(x)fh(x) dx → Au = b

• Isogeometric collocation methods (Reali, Hughes, 2015)

−∆uh(τ j) = fh(τ j), j = 1, . . . , m → Au = b

• Variational collocation method (Gomez, De Lorenzis, 2016)

0 =
∫

Ω
Bj(x) [∆uh(x) + fh(x)] dx = [∆uh(τ A) + fh(τ A)]︸ ︷︷ ︸

=0

∫
Ω

Bj(x) dx → Au = b
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Isogeometric Analysis
Abstract representation
Given xi (geometry), fi (r.h.s. vector), and gi (boundary conditions), computeu1

...
un

 = A−1


x1

...
xn

 ,

g1
...

gn


 · b


x1

...
xn

 ,

f1
...

fn

 ,

g1
...

gn




Any point of the solution can afterwards be obtained by a simple function evaluation

(ξ, η) ∈ [0, 1]2 7→ uh ◦ xh(ξ, η) = [B1(ξ, η), . . . , Bn(ξ, η)] ·

u1
...

un



Let us interpret the sets of B-spline coefficients {xi}, {fi}, and {gi} as an efficient
encoding of our PDE problem that is fed into our IGA machinery as input.
The output of our IGA machinery are the B-spline coefficients {ui} of the solution.
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Isogeometric Analysis + Physics-Informed Machine Learning
IgaNet: replace computation

by physics-informed machine learning

u1
...

un

 = A−1


x1

...
xn

 ,

g1
...

gn


 · b


x1

...
xn

 ,

f1
...

fn

 ,

g1
...

gn




Compute the solution from the trained neural network as follows

uh(ξ, η) = [B1(ξ, η), . . . , Bn(ξ, η)] ·

u1
...

un

 ,

u1
...

un

 = IgaNet


x1

...
xn

 ,

f1
...

fn

 ,

g1
...

gn
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IgaNet architecture (close to it but not yet)

x1

xn

f1

fn

g1

gn

ξ, η

σ

σ

σ

σ

σ

σ

σ

σ

σ

u1

un

loss = lossPDE + lossBDR

loss < ε end training

∂loss
∂(w, b) → update w, b

and continue training

ge
om

et
ry

r.h
.s.

ve
ct

or
bd

r.
co

nd
.

co
or

ds
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IgaNet architecture

x1

xn

f1

fn

g1

gn

σ

σ

σ

σ

σ

σ

σ

σ

σ

u1

un

loss = lossPDE + lossBDR

loss < ε end training

∂loss
∂(w, b) → update w, b

and continue training

ge
om

et
ry

r.h
.s.

ve
ct

or
bd

r.
co

nd
.

coords (ξ(k), η(k))N
k=1
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Loss function

lossPDE = α

NΩ

NΩ∑
k=1

∣∣∣∆ [
uh ◦ xh

(
ξ(k), η(k)

)]
− fh ◦ xh

(
ξ(k), η(k)

)∣∣∣2
lossBDR = β

NΓ

NΓ∑
k=1

∣∣∣uh ◦ xh

(
ξ(k), η(k)

)
− gh ◦ xh

(
ξ(k), η(k)

)∣∣∣2
Express derivatives with respect to physical space variables using the Jacobian J , the
Hessian H and the matrix of squared first derivatives Q (Schillinger et al. 2013):

∂2B
∂x2

∂2B
∂x∂y

∂2B
∂y2

 = Q−⊤




∂2B
∂ξ2

∂2B
∂ξ∂η

∂2B
∂η2

 − H⊤J−⊤

∂B
∂ξ

∂B
∂η
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Two-level training strategy
For [x1, . . . , xn] ∈ Sgeo, [f1, . . . , fn] ∈ Srhs, [g1, . . . , gn] ∈ Sbcond do

For a batch of randomly sampled (ξk, ηk) ∈ [0, 1]2 (or the Greville abscissae) do

Train IgaNet


x1

...
xn

 ,

f1
...

fn

 ,

g1
...

gn

 ; (ξk, ηk)Nsamples
k=1

 7→

u1
...

un


EndFor

EndFor

Details:
• 7 × 7 bi-cubic tensor-product B-splines for xh and uh, C2-continuous
• TensorFlow 2.6, 7-layer neural network with 50 neurons per layer and ReLU activation

function (except for output layer), Adam optimizer, 30.000 epochs, training is stopped
after 3.000 epochs w/o improvement of the loss value

Ongoing master thesis work of Frank van Ruiten, TU Delft
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Test case: Poisson’s equation on a variable annulus

g ≡ 0
g

≡
0,

1,
. .

. ,
11

0rad

1rad2rad

3rad

4rad

f ≡ 0, 1, . . . , 11

Ongoing master thesis work of Frank van Ruiten, TU Delft
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Preliminary results
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Preliminary results
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Let’s have a look under the hood

Computational costs of PINN vs. IgaNets, implementation aspects, ...
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Computational costs
Working principle of PINNs

x 7→ u(x) := NN(x; f, g, G) = σL(WLσ(. . . (σ1(W1x + b1))) + bL)

• use AD engine (automated chain rule) to compute derivatives, e.g., ux = NNx

• use AD engine on top of AD tree (!!!) to compute gradients w.r.t. weights for training

Working principle of IgaNets

[xi, fi, gi]i=1,...,n 7→ [ui]i=1,...,n := NN(xi, fi, gi, i = 1, . . . , n)

• use mathematics to compute derivatives, e.g., ∇xu = (
∑n

i=1 ∇ξBi(ξ)ui) J−t
G

• use AD to compute gradients w.r.t. weights for training, i.e. (illustrated in 1D)

∂(dr
ξu(ξ))

∂wk
=

n∑
i=1

∂(dr
ξbp

i ui)
∂wk

=
���������XXXXXXXXX

n∑
i=1

dr+1
ξ bp

i

∂ξ

∂wk
ui +

n∑
i=1

dr
ξbp

i

∂ui

∂wk
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Towards an ML-friendly B-spline evaluation

Major computational task (illustrated in 1D)

Given sampling point ξ ∈ [ξi, ξi+1) compute for r ≥ 0

dr
ξu(ξ) =

[
dr

ξbp
i−p(ξ), . . . , dr

ξbp
i (ξ)

]
· [ui−p, . . . , ui]︸ ︷︷ ︸

network’s output

Textbook derivatives

dr
ξbp

i (ξ) = (p − 1)

−dr−1
ξ bp−1

i+1 (ξ)
ξi+p − ξi+1

+
dr−1

ξ bp−1
i (ξ)

ξi+p−1 − ξi


with

bp
i (ξ) = ξ − ξi

ξi+p − ξi
bp−1

i (ξ) + ξi+p+1 − ξ

ξi+p+1 − ξi+1
bp−1

i+1 (ξ), b0
i (ξ) =

{
1 if ξi ≤ ξ < ξi+1
0 otherwise
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Towards an ML-friendly B-spline evaluation
Matrix representation of B-splines (Lyche and Morken 2011)[

dr
ξbp

i−p(ξ), . . . , dr
ξbp

i (ξ)
]

= p!
(p − r)!R1(ξ) · · · Rp−r(ξ)dξRp−r+1 · · · dξRp

with k × k + 1 matrices Rk(ξ), e.g.

R1(ξ) =
[

ξi+1−ξ
ξi+1−ξi

ξ−ξi
ξi+1−ξi

]

R2(ξ) =

 ξi+1−ξ
ξi+1−ξi−1

ξ−ξi−1
ξi+1−ξi−1

0

0 ξi+2−ξ
ξi+2−ξi

ξ−ξi
ξi+2−ξi


R3(ξ) = . . .
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An ML-friendly B-spline evaluation
Algorithm 2.22 from (Lyche and Morken 2011)

1 b = 1
2 For k = 1, . . . , p − r

1 t1 = (ξi−k+1, . . . , ξi)
2 t2 = (ξi+1, . . . , ξi+k)
3 w = (ξ − t1) ÷ (t2 − t1)
4 b = [(1 − w) ⊙ b, 0] + [0, w ⊙ b]

3 For k = p − r + 1, . . . , p

1 t1 = (ξi−k+1, . . . , ξi)
2 t2 = (ξi+1, . . . , ξi+k)
3 w = 1 ÷ (t2 − t1)
4 b = [−w ⊙ b, 0] + [0, w ⊙ b]

where ÷ and ⊙ denote the element-wise division and multiplication of vectors, respectively.
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An ML-friendly B-spline evaluation
Algorithm 2.22 from (Lyche and Morken 2011) with slight modifications

1 b = 1
2 For k = 1, . . . , p − r

1 t1 = (ξi−k+1, . . . , ξi)
2 t21 = (ξi+1, . . . , ξi+k) − t1
3 mask = (t21 < tol)
4 w = (ξ − t1−mask) ÷ (t21−mask)
5 b = [(1 − w) ⊙ b, 0] + [0, w ⊙ b]

3 For k = p − r + 1, . . . , p

1 t1 = (ξi−k+1, . . . , ξi)
2 t21 = (ξi+1, . . . , ξi+k) − t1
3 mask = (t21 < tol)
4 w = (1−mask) ÷ (t21−mask)
5 b = [−w ⊙ b, 0] + [0, w ⊙ b]

where ÷ and ⊙ denote the element-wise division and multiplication of vectors, respectively.

28 / 34



Performance evaluation — univariate B-splines
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Performance evaluation — bivariate B-splines
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Performance evaluation — trivariate B-splines
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Performance evaluation — univariate B-splines
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Conclusion and outlook
IgaNets combine classical numerics with physics-informed machine learning and may finally
enable integrated and interactive design-through-analysis workflows

WIP/What’s next
• interactive modelling & visualization
• extension to multi-patch topologies
• use of IGA and IgaNets in concert
• transfer learning upon basis refinement
• theoretical foundation & error analysis

Short paper: Möller, Toshniwal, van Ruiten: Physics-informed
machine learning embedded into isogeometric analysis, 2021. �

MATHEMATICS:  
 K E Y  E N A B L I N G  T E C H N O L O G Y   
F O R  S C I E N T I F I C  M A C H I N E  
L E A R N I N G

—

Journal paper and code release in preparation
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