Distributed time-parallel solution of transient problems with MGRIT and p-multigrid methods

Matthias Möller, Roel Tielen

Department of Applied Mathematics
Delft University of Technology, NL

Virtual International Converence on Isogeometric Analysis September 27-29, 2021, Lyon

Thematic Session: Computationally Efficient Algorithms for large-scale IGA

Acknowledgement: K. Vuik (TUD), D. Göddeke (University of Stuttgart)

Model problem and research aim

Our aim is to develop an efficient solution strategy for model problems of the form

$$
\begin{aligned}
\partial_{t} u(\mathbf{x}, t)-\kappa \Delta u(\mathbf{x}, t) & =f & & \mathbf{x} \in \Omega, t \in[0, T] \\
u(\mathbf{x}, t) & =g & & \mathbf{x} \in \Gamma, t \in[0, T] \\
u(\mathbf{x}, 0) & =u^{0}(\mathbf{x}) & & \mathbf{x} \in \Omega
\end{aligned}
$$

For us, efficient means the following

- robust with respect to h and p, and the number of patches
- computationally efficient throughout all problem sizes
- good strong and weak scaling in the number of processors and time steps

We treat the temporal problem using a multigrid-reduction-in-time approach with two-level θ time-stepping and apply a p-multigrid solver for the spatial problem.

Motivation

It is well known that solving the linear systems that arise from isogeometric discretizations is a challenge. A recent paper by Gervasio et al. quantifies the (exponential) growth of the condition number of the mass matrix M (left) and the stiffness matrix K (right).

Table 3 from Gervasio et al., doi:10.1007/s10915-020-01204-1

Our strategy for solving the spatial problem $-\kappa \Delta u=f$

1. Start at $\mathcal{V}_{h, p}$ and perform a direct projection to $\mathcal{V}_{h, 1}$ using a p-multigrid solver with ILUT smoother (single-patch case) and block-ILUT smoother (multi-patch case)
2. Solve the problem at level $p=1$ using classical h-multigrid with Gauss-Seidel smoother

© (Block-)ILUT • Gauss-Seidel ■ direct solve

Numerical efficiency - single-patch case

Our approach is robust with respect to h and p for tensor-product B-splines (top)

	$p=2$		$p=3$		$p=4$		$p=5$	
	ILUT	GS	ILUT	GS	ILUT	GS	ILUT	GS
$h=2^{-6}$	4	30	3	62	3	176	3	491
$h=2^{-7}$	4	29	3	61	3	172	3	499
$h=2^{-8}$	5	30	3	60	3	163	3	473
$h=2^{-9}$	5	32	3	61	3	163	3	452

as well as for locally refined THB-splines (bottom)

	$p=2$		$p=3$		$p=4$		$p=5$	
	ILUT	GS	ILUT	GS	ILUT	GS	ILUT	GS
$h=2^{-4}$	6	17	8	47	7	177	10	1033
$h=2^{-5}$	6	16	7	44	8	182	7	923
$h=2^{-6}$	6	17	5	43	6	201	12	1009

Numerical efficiency - multi-patch case

Our approach is moreover robust with respect to the number of patches, whereby the block-ILUT smoother requires less multigrid iterations than the global ILUT smoother.

	$p=2$ \# patches			$\begin{gathered} p=3 \\ \# \text { patches } \end{gathered}$			$p=4$ \# patches			$p=5$ \# patches		
	4	16	64	4	16	64	4	16	64	4	16	64
$h=2^{-5}$	3(5)	4(7)	4(9)	3(5)	3(7)	4(11)	2(4)	2(6)	4(-)	2(4)	2(6)	-(-)
$h=2^{-6}$	3(5)	$3(5)$	4(7)	$3(5)$	$3(7)$	$4(10)$	$3(6)$	$2(7)$	$3(11)$	$3(5)$	$3(7)$	$3(10)$
$h=2^{-7}$	$3(5)$	$3(5)$	$3(5)$	$3(5)$	$3(6)$	3(8)	3(5)	2(6)	$3(10)$	-(5)	6 (7)	$3(11)$

The Yeti footprint benchmark

	$p=2$		$p=3$		$p=4$		$p=5$	
	block	global	block	global	block	global	block	global
$h=2^{-3}$	4	5	2	4	2	4	2	4
$h=2^{-4}$	4	8	3	5	3	5	2	4
$h=2^{-5}$	4	78	3	6	3	5	3	5

Computational efficiency

Although our approach has higher setup times than h-multigrid with subspace corrected mass smoother [Takac, 2017] (left) it outperforms the latter for multiple solves (right)

\square assembly \square smoother(setup) \square solve
\square assembly \square smoother(setup) $\square 100$ solves

Multigrid-reduction-in-time

The temporal problem is solved with the multigrid-reduction-in-time algorithm by Friedhoff et al., whereby the fully implicit backward Euler scheme is used on all temporal levels l.

- relaxation ■exact solve \downarrow restriction \nearrow interpolation

Computational efficiency - strong scaling

Heat equation with $h=2^{-6}$ spatial resolution solved for $N_{t}=10.000$ time steps with backward Euler method on 128 Xeon Gold 6130 CPUs ($2.10 \mathrm{GHz}, 96 \mathrm{~GB}, 16$ cores)

Computational efficiency - speed up

Heat equation with $h=2^{-6}$ spatial resolution solved for $N_{t}=10.000$ time steps with backward Euler method on 128 Xeon Gold 6130 CPUs (2.10GHz, 96GB, 16 cores)

Computational efficiency - weak scaling

Heat equation with $h=2^{-6}$ spatial resolution solved for $N_{t}=$ cores $/ 64 \cdot 1.000$ time steps with backward Euler method on 128 Xeon Gold 6130 CPUs ($2.10 \mathrm{GHz}, 96 \mathrm{~GB}, 16$ cores)

Conclusions and further reading

Multigrid-reduction-in-time together with p-multigrid and (block-)ILUT smoothing yields an efficient solution strategy for transient problems discretized by IGA

- R.Tielen, M. Möller, D. Göddeke and C. Vuik: p-multigrid methods and their comparison to h-multigrid methods within Isogeometric Analysis, CMAME, Vol 372 (2020)
- R. Tielen, M. Möller and C. Vuik: A block ILUT smoother for multipatch geometries in Isogeometric Analysis, In: Springer INdAM Series, Springer, 2021
- R. Tielen, M. Möller and C. Vuik: Multigrid Reduced in Time for Isogeometric Analysis, Submitted to: Proceedings of the Young Investigators Conference 2021.
- R. Tielen, M. Möller and C. Vuik: Combining p-multigrid and multigrid reduced in time methods to obtain a scalable solver for Isogeometric Analysis, arXiv:2107.05337
- R. Tielen p-Multigrid Methods for Isogeometric Analysis, PhD thesis. To be defended Oct 2021.

Thanks for your interest in our work! Contact: M.Moller@tudelft.nl

