Distributed time-parallel solution of transient problems with MGRIT and p-multigrid methods

Matthias Möller, Roel Tielen

Department of Applied Mathematics Delft University of Technology, NL

Virtual International Converence on Isogeometric Analysis September 27-29, 2021, Lyon

Thematic Session: Computationally Efficient Algorithms for large-scale IGA

Acknowledgement: K. Vuik (TUD), D. Göddeke (University of Stuttgart)

Model problem and research aim

Our aim is to develop an efficient solution strategy for model problems of the form

$$\partial_t u(\mathbf{x}, t) - \kappa \Delta u(\mathbf{x}, t) = f \qquad \mathbf{x} \in \Omega, \ t \in [0, T]$$
$$u(\mathbf{x}, t) = g \qquad \mathbf{x} \in \Gamma, \ t \in [0, T]$$
$$u(\mathbf{x}, 0) = u^0(\mathbf{x}) \qquad \mathbf{x} \in \Omega$$

For us, efficient means the following

- robust with respect to h and p, and the number of patches
- computationally efficient throughout all problem sizes
- good strong and weak scaling in the number of processors and time steps

We treat the temporal problem using a **multigrid-reduction-in-time** approach with two-level θ time-stepping and apply a *p*-**multigrid** solver for the spatial problem.

Motivation

It is well known that solving the linear systems that arise from isogeometric discretizations is a challenge. A recent paper by Gervasio *et al.* quantifies the (exponential) growth of the condition number of the mass matrix M (left) and the stiffness matrix K (right).

Our strategy for solving the spatial problem $-\kappa\Delta u = f$

- 1. Start at $\mathcal{V}_{h,p}$ and perform a direct projection to $\mathcal{V}_{h,1}$ using a *p*-multigrid solver with ILUT smoother (single-patch case) and block-ILUT smoother (multi-patch case)
- 2. Solve the problem at level p = 1 using classical *h*-multigrid with Gauss-Seidel smoother

Numerical efficiency – single-patch case

Our approach is robust with respect to h and p for tensor-product B-splines (top)

	p=2		p =	3	p =	4	p = 5	
	ILUT	GS	ILUT	GS	ILUT	GS	ILUT	GS
$h = 2^{-6}$	4	30	3	62	3	176	3	491
$h = 2^{-7}$	4	29	3	61	3	172	3	499
$h = 2^{-8}$	5	30	3	60	3	163	3	473
$h = 2^{-9}$	5	32	3	61	3	163	3	452

as well as for locally refined THB-splines (bottom)

	p = 2		p = 3		p = 4		p = 5	
	ILUT	GS	ILUT	GS	ILUT	GS	ILUT	GS
$h = 2^{-4}$	6	17	8	47	7	177	10	1033
$h = 2^{-5}$	6	16	7	44	8	182	7	923
$h = 2^{-6}$	6	17	5	43	6	201	12	1009

Numerical efficiency – multi-patch case

Our approach is moreover robust with respect to the number of patches, whereby the block-ILUT smoother requires less multigrid iterations than the global ILUT smoother.

	p = 2		p = 3			p = 4			p = 5			
	# patches		# patches			# patches			# patches			
	4	16	64	4	16	64	4	16	64	4	16	64
$h = 2^{-5}$	3(5)	4(7)	4(9)	3(5)	3(7)	4(11)	2(4)	2(6)	4(-)	2(4)	2(6)	-(-)
$h = 2^{-6}$	3(5)	3(5)	4(7)	3(5)	3(7)	4(10)	3(6)	2(7)	3(11)	3(5)	3(7)	3(10)
$h = 2^{-7}$	3(5)	3(5)	3(5)	3(5)	3(6)	3(8)	3(5)	2(6)	3(10)	-(5)	6(7)	3(11)

The Yeti footprint benchmark

	p = 2		p = 3		p =	= 4	p = 5	
	block	global	block	global	block	global	block	global
$h = 2^{-3}$	4	5	2	4	2	4	2	4
$h = 2^{-4}$	4	8	3	5	3	5	2	4
$h = 2^{-5}$	4	78	3	6	3	5	3	5

Computational efficiency

Although our approach has higher setup times than h-multigrid with subspace corrected mass smoother [Takac, 2017] (left) it outperforms the latter for multiple solves (right)

Multigrid-reduction-in-time

The temporal problem is solved with the multigrid-reduction-in-time algorithm by Friedhoff et al., whereby the fully implicit backward Euler scheme is used on all temporal levels l.

Computational efficiency – strong scaling

Heat equation with $h = 2^{-6}$ spatial resolution solved for $N_t = 10.000$ time steps with backward Euler method on 128 Xeon Gold 6130 CPUs (2.10GHz, 96GB, 16 cores)

Computational efficiency – speed up

Heat equation with $h = 2^{-6}$ spatial resolution solved for $N_t = 10.000$ time steps with backward Euler method on 128 Xeon Gold 6130 CPUs (2.10GHz, 96GB, 16 cores)

Computational efficiency – weak scaling

Heat equation with $h = 2^{-6}$ spatial resolution solved for $N_t = \text{cores}/64 \cdot 1.000$ time steps with backward Euler method on 128 Xeon Gold 6130 CPUs (2.10GHz, 96GB, 16 cores)

Conclusions and further reading

Multigrid-reduction-in-time together with *p*-multigrid and (block-)ILUT smoothing yields an efficient solution strategy for transient problems discretized by IGA

- R.Tielen, M. Möller, D. Göddeke and C. Vuik: *p-multigrid methods and their comparison to h-multigrid methods within Isogeometric Analysis*, CMAME, Vol 372 (2020)
- R. Tielen, M. Möller and C. Vuik: A block ILUT smoother for multipatch geometries in Isogeometric Analysis, In: Springer INdAM Series, Springer, 2021
- R. Tielen, M. Möller and C. Vuik: *Multigrid Reduced in Time for Isogeometric Analysis*, Submitted to: Proceedings of the Young Investigators Conference 2021.
- R. Tielen, M. Möller and C. Vuik: *Combining p-multigrid and multigrid reduced in time methods to obtain a scalable solver for Isogeometric Analysis*, arXiv:2107.05337
- R. Tielen *p-Multigrid Methods for Isogeometric Analysis*, PhD thesis. To be defended Oct 2021.

Thanks for your interest in our work! Contact: M.Moller@tudelft.nl