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Model problem and research aim
Our aim is to develop an efficient solution strategy for model problems of the form

∂tu(x, t) − κ∆u(x, t) = f x ∈ Ω, t ∈ [0, T ]
u(x, t) = g x ∈ Γ, t ∈ [0, T ]
u(x, 0) = u0(x) x ∈ Ω

For us, efficient means the following
• robust with respect to h and p, and the number of patches
• computationally efficient throughout all problem sizes
• good strong and weak scaling in the number of processors and time steps

We treat the temporal problem using a multigrid-reduction-in-time approach with
two-level θ time-stepping and apply a p-multigrid solver for the spatial problem.
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Motivation
It is well known that solving the linear systems that arise from isogeometric discretizations
is a challenge. A recent paper by Gervasio et al. quantifies the (exponential) growth of the
condition number of the mass matrix M (left) and the stiffness matrix K (right).

where Mk and Kk are the mass matrix and the sti↵ness matrix of IGA approximation for a generic
k = 0, . . . , p � 1. In [16] the authors prove for d = 1, p � 1 and n � 2 (where n is the number of
elements, so that h ⇠ 1/n) that

�min(Mp�1) � c(p)h, �min(Kp�1) � ⇡2c(p)h. (65)

Other estimates about the clustering of the eigenvalues of the matrix corresponding to the IGA
approximation of the advection-di↵usion-reaction operator for d = 1 are proved in [16].

We have numerically computed the extreme eigenvalues of the mass and sti↵ness matrices for
both IGA-C0 and IGA-Cp�1 using the function eigs of Matlab for di↵erent values of h and p.
Starting from these values we have estimated the analytic behavior of the extreme eigenvalues
(and then the spectral condition number) of the IGA matrices w.r.t. both h and p.

For the sake of clearness, we anticipate in Table 3 the estimated behavior of the spectral
condition number of mass and sti↵ness matrices for all the three approaches (SEM-NI, IGA-C0

and IGA-Cp�1). In the next sections we show the numerical computed values and the estimated
behavior of the extreme eigenvalues and of the condition number of the mass and sti↵ness IGA
matrices.

4.1. IGA-C0 mass matrix

We denote with M0 the mass matrix associated with IGA-C0 approximation. Our numerical
results show that, for any value of h > 0 and p � 1, �min(M0) and �max(M0) behave as:

�min(M0) ⇠ hdp�d/24�pd, (66)

�max(M0) ⇠ hdp�d, (67)
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Table 3 from Gervasio et al., doi:10.1007/s10915-020-01204-1
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Our strategy for solving the spatial problem −κ∆u = f

1. Start at Vh,p and perform a direct projection to Vh,1 using a p-multigrid solver with
ILUT smoother (single-patch case) and block-ILUT smoother (multi-patch case)

2. Solve the problem at level p = 1 using classical h-multigrid with Gauss-Seidel smoother

p = 3 h

p = 2 h

p = 1 h

p = 1 2h

p = 1 4h

p-multigrid

h-multigrid

IGA-Cp−1

IGA-C0

(Block-)ILUT Gauss-Seidel direct solve
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Numerical efficiency – single-patch case
Our approach is robust with respect to h and p for tensor-product B-splines (top)

p = 2 p = 3 p = 4 p = 5
ILUT GS ILUT GS ILUT GS ILUT GS

h = 2−6 4 30 3 62 3 176 3 491
h = 2−7 4 29 3 61 3 172 3 499
h = 2−8 5 30 3 60 3 163 3 473
h = 2−9 5 32 3 61 3 163 3 452

as well as for locally refined THB-splines (bottom)

p = 2 p = 3 p = 4 p = 5
ILUT GS ILUT GS ILUT GS ILUT GS

h = 2−4 6 17 8 47 7 177 10 1033
h = 2−5 6 16 7 44 8 182 7 923
h = 2−6 6 17 5 43 6 201 12 1009
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Numerical efficiency – multi-patch case
Our approach is moreover robust with respect to the number of patches, whereby the
block-ILUT smoother requires less multigrid iterations than the global ILUT smoother.

p = 2 p = 3 p = 4 p = 5
# patches # patches # patches # patches

4 16 64 4 16 64 4 16 64 4 16 64
h = 2−5 3(5) 4(7) 4(9) 3(5) 3(7) 4(11) 2(4) 2(6) 4(−) 2(4) 2(6) −(−)
h = 2−6 3(5) 3(5) 4(7) 3(5) 3(7) 4(10) 3(6) 2(7) 3(11) 3(5) 3(7) 3(10)
h = 2−7 3(5) 3(5) 3(5) 3(5) 3(6) 3(8) 3(5) 2(6) 3(10) −(5) 6(7) 3(11)

The Yeti footprint benchmark
p = 2 p = 3 p = 4 p = 5

block global block global block global block global
h = 2−3 4 5 2 4 2 4 2 4
h = 2−4 4 8 3 5 3 5 2 4
h = 2−5 4 78 3 6 3 5 3 5
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Computational efficiency

Although our approach has higher setup times than h-multigrid with subspace corrected
mass smoother [Takac, 2017] (left) it outperforms the latter for multiple solves (right)
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Multigrid-reduction-in-time
The temporal problem is solved with the multigrid-reduction-in-time algorithm by Friedhoff
et al., whereby the fully implicit backward Euler scheme is used on all temporal levels l.

l = 0 ∆t

l = 1 ∆tm

l = 2 ∆tm2

l = 3 ∆tm3

l = 4 ∆tm4

relaxation exact solve restriction interpolation

8 / 12



Computational efficiency – strong scaling
Heat equation with h = 2−6 spatial resolution solved for Nt = 10.000 time steps with
backward Euler method on 128 Xeon Gold 6130 CPUs (2.10GHz, 96GB, 16 cores)
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Computational efficiency – speed up
Heat equation with h = 2−6 spatial resolution solved for Nt = 10.000 time steps with
backward Euler method on 128 Xeon Gold 6130 CPUs (2.10GHz, 96GB, 16 cores)
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Computational efficiency – weak scaling
Heat equation with h = 2−6 spatial resolution solved for Nt = cores/64 · 1.000 time steps
with backward Euler method on 128 Xeon Gold 6130 CPUs (2.10GHz, 96GB, 16 cores)

100

101

102

103

104

16
3

16
7 20

9 27
6

17
2

19
8

21
9 27

3

20
1

19
6 25

3 30
7

17
8

19
2 23
5 30

1

17
9

19
2 23

8 31
0

17
5

19
6 24

5 30
3

CP
U

tim
es

64 cores

128 cores

256 cores

512 cores

1024 cores

2048 cores

p = 2 p = 3 p = 4 p = 5

11 / 12



Conclusions and further reading

Multigrid-reduction-in-time together with p-multigrid and (block-)ILUT smoothing
yields an efficient solution strategy for transient problems discretized by IGA

• R.Tielen, M. Möller, D. Göddeke and C. Vuik: p-multigrid methods and their comparison to
h-multigrid methods within Isogeometric Analysis, CMAME, Vol 372 (2020)

• R. Tielen, M. Möller and C. Vuik: A block ILUT smoother for multipatch geometries in
Isogeometric Analysis, In: Springer INdAM Series, Springer, 2021

• R. Tielen, M. Möller and C. Vuik: Multigrid Reduced in Time for Isogeometric Analysis,
Submitted to: Proceedings of the Young Investigators Conference 2021.

• R. Tielen, M. Möller and C. Vuik: Combining p-multigrid and multigrid reduced in time
methods to obtain a scalable solver for Isogeometric Analysis, arXiv:2107.05337

• R. Tielen p-Multigrid Methods for Isogeometric Analysis, PhD thesis. To be defended Oct 2021.

Thanks for your interest in our work! Contact: M.Moller@tudelft.nl
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