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Abstract

The development of adaptive numerical schemes for steady transport
equations is addressed. A goal-oriented error estimator is presented and used
as a refinement criterion for conforming mesh adaptation. The error in the
value of a linear target functional is measured in terms of weighted residuals
that depend on the solutions to the primal and dual problems. The Galerkin
orthogonality error is taken into account and found to be important when-
ever flux or slope limiters are activated to enforce monotonicity constraints.
The localization of global errors is performed using a natural decomposition
of the involved weights into nodal contributions. A nodal generation func-
tion is employed in a hierarchical mesh adaptation procedure which makes
each refinement step readily reversible. The developed simulation tools are
applied to a linear convection problem in two space dimensions.

Key words: steady transport equations, flux limiting, a posteriori error
estimates, duality argument, goal-oriented mesh adaptation

1. Introduction

In many numerical methods for hyperbolic conservation laws, flux or slope
limiters are employed to ensure nonlinear stability and suppress spurious os-
cillations. The resulting nonlinear approximation is at least second-order
accurate in regions of smoothness but reverts to a nonoscillatory low-order
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scheme in the neighborhood of discontinuities and steep fronts. Local mesh
refinement makes it possible to achieve a crisp resolution of small-scale fea-
tures. On the other hand, the computational cost can be reduced by coars-
ening the mesh elsewhere. A reliable a posteriori estimate of local errors is
required to identify the mesh elements to be refined or coarsened.

The goal-oriented approach to error estimation [1, 3, 9, 16, 18] is ap-
plicable not only to elliptic PDEs but also to hyperbolic conservation laws
[5, 6, 17]. In most cases, the error in the quantity of interest is estimated
using the duality argument, Galerkin orthogonality, and a direct decomposi-
tion of the weighted residual into element contributions. The most prominent
representative of such error estimators is the Dual Weighted Residual (DWR)
method of Becker and Rannacher [3, 4]. The recent paper by Meidner et al.
[14] is a rare example of a DWR estimate that does not require Galerkin
orthogonality or information about the cause of its possible violation.

Kuzmin and Korotov [12] applied the DWR method to steady convection-
diffusion equations and obtained a simple estimate of local Galerkin orthog-
onality errors due to flux limiting or other ‘variational crimes.’ In contrast to
the usual approach, the weighted residuals are decomposed into nodal (rather
than element) contributions. In regions of insufficient mesh resolution, the
computable Galerkin orthogonality error comes into prominence. The mesh
adaptation strategy to be presented below takes advantage of this fact.

This paper is organized as follows. First, the weak form of a linear
model problem is introduced. Next, a goal-oriented error estimate is de-
rived, the practical implementation of adaptive mesh refinement/coarsening
is discussed, and a multidimensional flux limiter is presented. Finally, a two-
dimensional convection equation is solved using a limited FEM discretization
on an adaptive mesh containing both triangular and quadrilateral cells.

2. Galerkin weak form

Steady convective transport of a conserved scalar quantity u in a do-
main Ω with boundary Γ can be described by the linear hyperbolic equation

∇ · (vu) = s in Ω. (1)

Here v is a stationary velocity field and s is a volumetric source/sink. Due
to hyperbolicity, a Dirichlet boundary condition is imposed at the inlet

u = uD on Γin = {x ∈ Γ |v · n < 0}, (2)

where n is the unit outward normal and uD is the prescribed boundary data.
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The weak form of the above boundary value problem can be written as

a(w, u) = b(w), ∀w. (3)

For brevity, we refrain from an explicit definition of functional spaces. The
bilinear form a(·, ·) and the linear functional b(·) are defined by

a(w, u) =

∫
Ω

w∇ · (vu) dx−
∫

Γin

wuv · n ds, (4)

b(w) =

∫
Ω

ws dx−
∫

Γin

wuDv · n ds. (5)

The inflow boundary conditions are imposed weakly via the surface integrals.
The differentiation of vu in (4) can be avoided using integration by parts

a(w, u) =

∫
Γ

wuv · n ds−
∫

Ω

∇w · (vu) dx. (6)

This representation implies that a discontinuous weak solution u is admissi-
ble. In linear hyperbolic problems of the form (1), singularities travel along
the streamlines of v. They may be caused by a jump in the value of s or uD.

3. Global error estimates

Let uh be a continuous function that may represent an approximate so-
lution to (1)–(2) or a finite element interpolant of discrete nodal values. The
numerical error e = u− uh can be measured using the residual of (3)

ρ(w, uh) = b(w)− a(w, uh). (7)

Obviously, the value of ρ(w, uh) depends not only on the quality of uh but also
on the choice of w. In goal-oriented estimates, this weight carries information
about the quantities of interest. The objectives of a numerical study are
commonly defined in terms of a linear output functional, such as [17]

j(u) =

∫
Ω

gu dx +

∫
Γout

huv · n ds, g, h ∈ {0, 1}. (8)

The piecewise-constant function g picks out a subdomain, for example, an
interior or boundary layer, where a particularly accurate approximation to
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u is desired. The selector h picks out a portion of the outflow boundary
Γout = {x ∈ Γ |v · n > 0}, where the convective flux is to be controlled.

In order to estimate the error j(e) in the numerical value of the output
functional, consider the dual or adjoint problem [3, 4] associated with (3)

a(z, e) = j(e), ∀e. (9)

The surface integral in (8) implies the weakly imposed Dirichlet boundary
condition z = h on Γout [17]. The error j(e) and residual (7) are related by

j(u− uh) = a(z, u− uh) = ρ(z, uh). (10)

An arbitrary numerical approximation zh to the exact solution z of the dual
problem (9) can be used to decompose the so-defined error as follows

j(u− uh) = ρ(z − zh, uh) + ρ(zh, uh). (11)

If Galerkin orthogonality holds for the numerical approximation uh, then
ρ(zh, uh) = 0. Thus, the computable term ρ(zh, uh) is omitted in most goal-
oriented error estimates for finite element discretizations. However, the or-
thogonality condition is frequently violated due to numerical integration,
round-off errors, slack tolerances for iterative solvers, and flux limiting.

Since the exact dual solution z is usually unknown, the derivation of a
computable error estimate involves another approximation ẑ ≈ z such that

j(u− uh) ≈ ρ(ẑ − zh, uh) + ρ(zh, uh). (12)

The magnitudes of the two residuals can be estimated separately as follows:

|ρ(ẑ − zh, uh)| ≤ Φ, |ρ(zh, uh)| ≤ Ψ, (13)

where the globally defined bounds Φ and Ψ are assembled from contributions
of individual nodes or elements, as explained in the next section.

The reference solution ẑ is commonly obtained from zh using some sort
of postprocessing. If ρ(zh, uh) = 0, then the estimate j(u − uh) ≈ 0 that
follows from (12) with ẑ = zh is worthless, hence the need to compute ẑ on
another mesh or interpolate it using higher-order polynomials [12, 16]. On
the other hand, the setting ẑ = zh is not only acceptable but also optimal
for nonlinear flux-limited discretizations such that j(u−uh) ≈ ρ(zh, uh) 6= 0.
In situations when the term ρ(z − zh, uh) is nonnegligible, extra work needs
to be invested into the recovery of a superconvergent approximation ẑ 6= zh.
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4. Local error estimates

The global upper bounds Φ and Ψ make it possible to verify the accuracy
of the approximate solution uh but the estimated errors in the quantity of in-
terest must be localized to find the regions where a given mesh is too coarse or
too fine. A straightforward decomposition of weighted residuals into element
contributions results in an oscillatory distribution and a strong overestima-
tion of local errors. In particular, the restriction of the term ρ(zh, uh) to a
single element Ωk can be large in magnitude even if Galerkin orthogonality
is satisfied globally (positive and negative contributions cancel out).

Following Schmich and Vexler [16], we decompose Φ and Ψ into local
bounds associated with the nodes of the mesh on which zh is defined. Let

zh =
∑

i

ziϕi, (14)

where {ϕi} is a set of Lagrange basis functions such that
∑

i ϕi ≡ 1 and

ẑ − zh =
∑

i

wi, wi = ϕi(ẑ − zh). (15)

The contribution of node i to the bounds Φ and Ψ is defined as in [12]

Φi = |ρ(wi, uh)|, Ψi = |ρ(ziϕi, uh)|. (16)

If the residual is orthogonal to the test function ϕi, then Ψi = 0. A nonvan-
ishing value of Ψi implies a local violation of Galerkin orthogonality.

The magnitude of j(u− uh) is estimated by the sum of local errors, i.e.,

Φ =
∑

i

Φi, Ψ =
∑

i

Ψi. (17)

Finally, an optional conversion into element contributions is performed for
mesh adaptation purposes. Introducing the continuous error function

ξ =
∑

i

ξiϕi, ξi =
Φi + Ψi∫
Ω
ϕi dx

, (18)

the following representation of the total error η = Φ + Ψ is obtained [12]

η =
∑

k

ηk, ηk =

∫
Ωk

ξ dx. (19)

In a practical implementation, the midpoint rule is employed to calculate ηk.
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5. Hierarchical mesh adaptation

Any numerical method can be used to compute the approximate solutions
uh and zh on a given mesh. The process of mesh adaptation is based on the
estimate of local errors (19). Elements that make the largest contribution ηk

to the global error η are refined, and the flow solver is invoked to recompute
numerical solutions on the new grid. This process continues until the global
error becomes smaller than a prescribed tolerance, and/or the maximum
number of refinement cycles has been reached. The computational cost can
be reduced by coarsening the mesh in regions where the local error is much
smaller than average. For simplicity, the adaptation algorithm is presented
for 2D grids which may consist of triangles and quadrilaterals.

5.1. Refinement algorithm

Following Bank et al. [2], the elements marked for refinement are sub-
divided into four (triangular or quadrilateral) subelements. This procedure
generates hanging nodes at edge midpoints if an element is refined while
its neighbor remains unrefined. In this event, the opposite cell is split into
transition elements, so as to make the mesh globally conformal. Admissi-
ble refinement patterns in two dimensions are depicted in Fig. 1. If transi-
tion elements are further subdivided, then the mesh quality may deteriorate.
Therefore, all green cells are removed at the beginning of the next refine-
ment step, as suggested in [2]. By construction, each local subdivision can
be reversed in a unique way by combining the corresponding cells into the
original macroelement and deleting the vertices at the edge midpoints.

red refinement/coarsening green refinement/coarsening

Figure 1: Refinement/coarsening patterns in two dimensions.
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The hierarchical mesh adaptation procedure presented in [15] is a gen-
eralization of Hempel’s [7] work to arbitrary meshes in two and three space
dimensions. Let the sets of elements and vertices be denoted by E = {Ωk}
and V = {vi}, respectively. Consider an initial mesh Th = (E ,V) free of
hanging nodes. Following Hempel [7], each node is given a birth certificate
that determines its age. The nodal generation function g is initialized by
zero for all vertices belonging to Th and updated during mesh refinement. If
the new vertex vi is created at the midpoint of an edge Γkl or in the interior
of an element Ωk, then its generation number is calculated as follows [15]:

g(vi) :=


max
vj∈Γkl

g(vj) + 1 if vi ∈ Γkl := Ω̄k ∩ Ω̄l,

max
vj∈∂Ωk

g(vj) + 1 if vi ∈ Ωk \ ∂Ωk.
(20)

This is illustrated in Fig. 2 for a sequence of three nested meshes. Obviously,
the number of subdivision steps required to construct a particular element
coincides with the largest generation number evaluated at its vertices. It is
worthwhile to store the nodal function g and use it to control the maximum
number of refinements which may be different in different mesh regions.

5.2. Coarsening algorithm

The coarsening algorithm is designed to undo the subdivision of elements
without changing the structure of coarser grid levels embedded in the se-
quence of nested meshes. Hence, the initial grid Th can be recovered from
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Figure 2: Mesh hierarchy with nodal generation numbers.
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a (locally) refined one by combining groups of elements in the right order.
It is worth mentioning that any mesh resulting from a sequence of refine-
ment/coarsening steps can be constructed by pure element subdivision.

The nodal generation number (20) provides information about patches of
cells that belong together, which makes it possible to rebuild the complete
mesh hierarchy. Hempel [7] used this property of the generation function to
develop a recursive vertex locking procedure for triangles in 2D. A revised
algorithm applicable to arbitrary meshes was proposed in [15]. It is applied
after marking the elements for refinement and before the actual subdivision.

Let the deletion indicator d be positive if a vertex is removable and non-
negative otherwise. It is initialized by the nodal generation function d ≡ g
so that all vertices of the initial grid are locked unconditionally (d(vi) = 0).
Unremovable nodes with d > 0 are locked step-by-step. If a cell is marked
for refinement, its vertices need to be locked. Moreover, the vertices of an
element Ωk should be locked if the local error estimator ηk exceeds the coars-
ening tolerance and the element results from a regular subdivision (cf. Fig. 1:
red refinement). This second check is necessary to make sure that the coars-
ening algorithm does not produce patterns of green elements that would not
be created by pure mesh refinement. Next, generation numbers are compared
in a loop over edges, and the older endpoint (if any) is locked

d(vi) := −|d(vi)| ⇔ ∃Γij such that g(vi) < g(vj). (21)

This last step ensures that vertices are not removed if they belong to coarser
grid levels. In practice, the preliminary set of removable nodes requires some
post-processing to rule out the formation of invalid or undesirable element
patterns (see [15] for technical details). Finally, all unlocked vertices and the
connected elements/faces/edges are removed from the current mesh, and the
macroelements/faces from the grid one level coarser are restored.

For example, consider the mesh hierarchy shown in Fig. 2 and let all cells
present on level 2 be marked for coarsening. Nodes which belong to the
initial mesh Th are always locked (d(vi) = 0), while those with generation
number 1 are locked by condition (21). Therefore, the elimination of red
edges and corresponding vertices from level 2 yields the level 1 mesh.

6. Algebraic flux correction

In this work, the approximate solutions uh and zh are computed using a
local extremum diminishing (LED) finite element scheme [10]. Within the
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framework of algebraic flux correction, the linear system Au = b that results
from the standard Galerkin discretization of (1) is replaced by [10, 11, 13]

(A−D)u = b+ f̄(u), (22)

where D is an artificial diffusion operator and f̄(u) is a limited antidiffusive
correction. To enforce the M-matrix property for A−D, we take [10, 13]

dii = −
∑
j 6=i

dij, dij = max{aij, 0, aji}, j 6= i. (23)

The nonlinear correction term f̄(u) represents a sum of raw antidiffusive
fluxes fij multiplied by solution-dependent correction factors αij ∈ [0, 1]

f̄i =
∑
j 6=i

αijfij, fij = dij(ui − uj), j 6= i. (24)

It is easy to verify that the original system Au = b is recovered for αij ≡ 1.

By construction, the fluxes are skew-symmetric (fji = −fij), so mass
conservation is maintained at the discrete level provided that αji = αij.
Each pair of fluxes fij and fji can be associated with an edge of the sparsity
graph and processed using efficient edge-based data structures [13].

For each pair of neighboring nodes i and j such that aji ≤ aij, the com-
putation of αij is based on the following sequence of algorithmic steps [10]

1. Compute the sums of positive/negative antidiffusive fluxes to be limited

P+
i := P+

i + max{0, fij}, P−i := P−i + min{0, fij}. (25)

2. Compute the upper/lower bounds Q±i to be imposed on the sums P±i

Q+
i := Q+

i + max{0,−fij}, Q+
j := Q+

j + max{0, fij},
Q−i := Q−i + min{0,−fij}, Q−j := Q−j + min{0, fij}.

(26)

3. Pick the nodal correction factor R±i evaluated at the ‘upwind’ node i

R±i = min

{
1,
Q±i
P±i

}
, αij =

{
R+

i , if fij > 0,
R−i , if fij ≤ 0.

(27)

The same correction factor αji := αij is applied to the flux fji into node j
located ‘downwind’ in the sense of the orientation convention aji ≤ aij.
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7. Numerical experiments

In this section, the presented high-resolution finite element scheme, goal-
oriented error estimator, and hierarchical mesh adaptation algorithm are
applied to a test problem from [8]. Consider equation (1) with s ≡ 0 and

v(x, y) = (y,−x) in Ω = (−1, 1)× (0, 1).

This incompressible velocity field corresponds to steady rotation about (0, 0).
The exact solution and inflow boundary conditions are given by [8]

u(x, y) =

{
1, if 0.35 ≤

√
x2 + y2 ≤ 0.65,

0, otherwise.

The so-defined discontinuous inflow profile (−1 ≤ x < 0, y = 0) undergoes
circular convection and propagates along the streamlines of v(x, y) all the
way to the outlet (0 < x ≤ 1, y = 0), while its shape remains the same.

Let j(u) be defined by (8) with g = 1 in ω = (−0.1, 0.1) × (0, 1) and
g = 0 elsewhere. The function h is defined as the trace of g on Γout. The
exact value of j(u) is 6.04497e − 02. The solution shown in Fig. 3 (a) was
computed by the FEM-LED scheme described in Section 6 on a uniform
mesh of bilinear elements with spacing h = 1/80. Owing to algebraic flux
correction, the resolution of the discontinuous front is remarkably sharp,
and no undershoots or overshoots are observed. However, it is obvious that
there is actually no need for such a high resolution beyond x > 0.1 if it is
enough to have an accurate approximation in the small subdomain ω. Indeed,
whatever is happening downstream of ω has no influence on the solution in
this subdomain. This is illustrated by Fig. 3 (b) which shows the solution to
the dual problem computed by the FEM-LED scheme on the same mesh.

Goal-oriented error analysis is performed using estimate (12) with ẑ = zh.
This setting implies that Φ = 0 and η = Ψ is the Galerkin orthogonality
error caused by flux limiting. Remarkably, the resulting global estimates
are in a good agreement with the exact error which is illustrated in Table 1
for different grid spacings. The sharpness of the obtained error estimates is
measured using the absolute and relative effectivity indices [12]

Ieff =
η

|(j(u− uh)|
, Irel =

∣∣∣∣ |(j(u− uh)| − η
|(j(u)|

∣∣∣∣ .
We remark that the value of Ieff is unstable and misleading when the de-
nominator is very small or zero, and the evaluation of integrals is subject to
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h |j(u− uh)| η(zh, uh) Ieff Irel

1/10 2.009555e-03 2.115012e-03 1.05 1.744541e-03
1/20 4.401534e-04 3.640322e-04 0.82 1.259248e-03
1/40 1.312391e-04 1.025215e-04 0.78 4.750662e-04
1/80 4.283158e-05 3.535738e-05 0.82 1.236433e-04
1/160 1.254089e-05 1.072697e-05 0.85 3.000709e-05

Table 1: Circular convection: exact vs. estimated global error.

rounding errors. The relative effectivity index Ieff is free of this drawback
and exhibits monotone convergence as the mesh is refined (see Table 1).

The adaptive hybrid mesh presented in Fig. 4 is refined along the dis-
continuity lines of u but only until they cross the outflow boundary of ω.
Using a finer mesh beyond the line x = 0.1 would not improve the accuracy
of the solution uh inside ω. The smallest mesh width is h = 1/320, which
corresponds to more than 200,000 cells in the case of global mesh refinement.

Since the dual weight zh contains built-in information regarding the trans-
port of errors and goals of simulation, such error estimators furnish a better
refinement criterion than, for example, error indicators based on gradient
recovery [19]. In the latter case, unnecessary mesh refinement would take
place along the discontinuities located downstream of the subdomain ω.

8. Conclusions

A goal-oriented error estimate was derived for nonlinear discretizations of
a steady transport equation. The loss of Galerkin orthogonality in the process
of flux limiting was shown to provide valuable feedback for mesh adaptation.
A hierarchical mesh adaptation strategy was described and used to generate a
locally refined hybrid mesh for circular convection in a 2D domain. Diffusive
terms can be included using gradient recovery to stabilize the residuals and
infer a proper distribution of local errors [12]. Further work will concentrate
on goal-oriented error estimation for unsteady flow problems.
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(a) primal solution

(b) dual solution

Figure 3: Circular convection: FEM-LED discretization, h = 1/80.
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(a) primal solution

(b) computational mesh

Figure 4: Circular convection: FEM-LED discretization, 5,980 cells.
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