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Abstract. Gradient recovery techniques for the design of a posteriori error indicators
are reviewed in the context of flurd dynamic problems featuring shocks and discontinuities.
An edgewise slope limiting approach® tailored to linear finite element discretizations is
presented. The improved gradient values at edge midpoints are recovered as the limited
average of constant slopes from adjacent triangles. Furthermore, the low-order gradients
may serve as natural upper and lower bounds to be imposed on the edge slopes. To this end,
approved techniques such as averaging projection®, the (superconvergent) Zienkiewicz-Zhu
patch recovery (SPR*) and polynomial preserving recovery (PPR*) are used to predict
high-order gradients. A slope limiter is applied edge-by-edge to correct the provisional edge
gradient values subject to geometric constraints. In either case, a second order accurate
quadrature rule is employed to measure the difference between consistent and reconstructed
slopes in the (local) Lo-norm which provides a usable indicator for grid adaptation.

The algebraic flux correction (AFC) methodology™ 1 is equipped with adaptive mesh
refinement/coarsening procedures governed by the recovery based error indicator. The
adaptive algorithm is applied to inviscid compressible flows at high Mach numbers.

1 INTRODUCTION

In a series of recent publications'* 12, an algebraic framework for the construction of
M

high-resolution schemes for convection dominated partial differential equations was devel-
oped. The algebraic flux correction (AFC) paradigm renders a high-order discretization
local extremum diminishing (LED) by a conservative elimination of negative off-diagonal
entries from the discrete transport operator so as to end up with a non-oscillatory approx-
imation of low order. In order to recover the high accuracy of the original, e.g., standard
Galerkin scheme, compensating antidiffusion can be added whose magnitude must be
modulated based on the local smoothness of the solution. To this end, the antidiffusive
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fluxes are limited by a nodal limiter of FCT or TVD type or by the recently proposed
general-purpose limiter'* which represents a combination thereof.

The adaptive blending of high- and low-order methods prevents us from using common
error estimation approaches that require an a priori knowledge of the order of approxi-
mation, e.g., estimators for the truncation error®* based on classical Richardson extrap-
olation. Gradient recovery techniques®® seem to be a promising alternative, but their use
in error estimation requires that the true solutions are sufficiently smooth.

This paper focuses on hyperbolic problems featuring shocks and discontinuities so that
traditional recovery procedures may fail to be reliable. In what follows, limited averaging
of consistent slopes is used to compute improved gradient values at midpoints of edges. As
an alternative, classical recovery procedures are employed to predict provisional gradient
values at edge midpoints which are corrected by means of a slope limiter. The upper and
lower bounds to be imposed are given by the constant slopes of adjacent triangles.

2 A POSTERIORI ERROR INDICATORS

As a model problem, consider a generic partial differential equation Lu = f where the
(possibly nonlinear) differential operator £ may comprise both spatial and time deriva-
tives. Its variational form is derived by integrating the weighted residual of the governing
equation over the domain €2 and setting the result equal to zero

/ w[Llu — fldx = 0. (1)
Q
Moreover, let the solution be approximated by means of finite elements

WA U, = Y uip;, (2)
J

where ¢, denote the basis functions spanning the finite-dimensional subspace Vj,. In this
article, we shall concentrate on the numerical error resulting from the approximation of
spatial derivatives and devise an a posteriori indicator for the vector-valued gradient error

e = Vu— Vuy,. (3)
In this paper, the consistent gradient will also be referred to as low-order gradient

Vuy, = Zungpj. (4)
J

The basic idea of recovery based error estimators®?, is to replace the unknown values Vu
of the exact slopes in equation (3) by a smoothed gradient field Vu,, so as to obtain

e~ é=Vu, — Vuy, (5)

which may serve as a viable approximation to the true error defined in (3).
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In general, pointwise error estimates are difficult to obtain, so integral measures are
typically employed in the finite element framework. Let €2, denote a partition of the
computational domain into a set of non-overlapping finite elements €2, so that the Ls-
norm represents a usable measure for the error both globally and locally

eIz, = > _llelli o el :/Q e'e dx. (6)

In this paper, we only consider piecewise linear (Py) finite elements on triangular meshes
for which the consistent gradient Vu,, = {g%’;, g%’;} is constant on each triangle. Hence, the
improved slopes should be at least piecewise linear so as to provide a better approximation
to the exact gradient. It suffices to specify slope values at all midpoints of edges, i.e.,
X = %(xz + x;), to obtain a smoothed quantity Vuy, that varies linearly in each €,
and is allowed to exhibit jumps across inter-element boundaries. This approach can be
seen as seeking the nodal values for a non-conforming approximation of Vuy, by means of
linear Crouzeix-Raviart finite elements for which the local degrees of freedom are located
at edge midpoints. For bilinear finite elements used on quadrilateral grids, a similar
gradient approximation can be based on the non-conforming Rannacher-Turek element.

Let (6) be integrated via the second order accurate quadrature rule

/Qe eTe ’ ‘ Z 5 €ij, where €ij = Vul-j - VUU (7)
In the above expression, |{).| denotes the element area and all quantities are evaluated at
the three midpoints of surrounding edges indicated by subscript ¢j. It remains to devise
a procedure for constructing an improved gradient value Vuw for the edge ij J.

3 LIMITED GRADIENT AVERAGING

Our first approach to obtaining a smoothed edge gradient is largely inspired by slope
limiting techniques employed in the context of high-resolution finite volume schemes and
later carried over to discontinuous Galerkin finite element methods. For simplicity, let us
illustrate the basic ideas for a one-dimensional finite volume discretization. The task is
to define a suitable slope value u; on the interval I; = (xj,l/g,xjﬂ/g) S0 as to recover a
piecewise linear approximate solution from the mean value ;

up(x) = u; + uj(r — z;), Va el (8)

In the simplest case, one-sided or centered slopes can be utilized to obtain first- and
second-order accurate schemes which lead to rather diffusive profiles and are quite likely
to produce non-physical oscillations in the vicinity of steep fronts and discontinuities,
respectively. For a numerical scheme to be non-oscillatory, it should possess certain prop-
erties!®, e.g., be monotone, positivity preserving or total variation diminishing (TVD).
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Jameson formulated a handy condition to show that a numerical scheme is local ex-
tremum diminishing'? (LED), which represents a generalization of Harten’s TVD theorem.
In order to render a given approximation LED, he introduced a family of limited average
operators’® L(a, b) which are characterized by the following properties:

P1. L(a,b) = L(b,a).

P2. L(ca,cb) = cL(a,b).

P3. L(a,a) = a.

P4. L(a,b) =0 if ab <0.
While conditions P1-P3 are natural properties of an average, P4 is to be enforced by
means of a limiter function. It has been demonstrated!® that a variety of standard TVD
limiters can be written in such form. Let the modified sign function be given by

S(a,b) = sign(a) —2|— sign(b) (9)

which equals zero for ab < 0 and returns the common sign of a and b otherwise. Then
the most widely used two parameter limiters for TVD schemes can be written as:

1. minmod: L(a,b) = S(a,b) min{|al, |b|}
2. maxmod: L(a,b) = S(a,b) max{|al|, |b|}
2|al[b]
3. Van Leer: L(a,b) =S8(a,b) ————
@ Gl
4. MC: L(a,b) = S(a,b) min{‘“b‘,zm,zw\}
5. superbee: L(a,b) = S(a,b) max{min{2|al, |b|}, min{|al, 2|b|}}

Finally, the limited counterpart of v} in (8) can be computed as follows

Ar  Axw

Let us return to our original task that requires the reconstruction of smoothed solution
gradients at edge midpoints. This is where the benefit of an edge based formulation comes
into play. Except at the boundary, exactly two elements are adjacent to edge 75 such that
an improved gradient can be determined efficiently as the limited average of the constant
slope values to the left and to the right by letting each component be defined as follows
ﬁuij == E(VUJF

150

Vu;). (11)
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It is easy to verify that for all limiter functions £ presented above, the recovered edge
gradient is naturally bounded from below and above by the constant slope values

min - max e max B
V" < Vg < V™, where  Vuj™ = i {Vu;, Vg }. (12)
Note that the above inequality holds separately for each spatial component of the vector-
valued gradient. Suppose the upper and lower bounds have different sign such that

n -
lau"j] l%] <0 (13)
axd a$d

for, say, the d-th spatial component of the gradient. The mean value theorem states that
its value is zero somewhere in-between. If this is true for all components of the gradient
the approximate solution may attain a local extremum across the edge. Hence, property
P4 of limited average operators acts as a discrete analog to the necessary condition for
local extrema in the continuous case which requires the derivative to be zero.

To some extend, the recovered gradient (11) depends on the choice of the limiter L.

In the authors’ experience, MC seems to be a safe choice as it tries to select the standard
average whenever possible without violating the natural upper and lower bounds.

4 LIMITED GRADIENT RECONSTRUCTION

As an alternative to the limited averaging approach, traditional recovery procedures
can be used to predict provisional gradient values at edge midpoints which are corrected
by means of edgewise slope limiting so as to satisfy the geometric constraints set up by
inequality (12). The idea of using recovery techniques to obtain improved gradient /stress
values exhibits quite a long tradition in finite elements. In their first paper on recovery-
based error estimation®?, Zienkiewicz and Zhu make use of so-called averaging projection
schemes to construct smoothed slope values from the finite element solution as follows

@Uh = Z @u]ﬂﬁj, (14)
J
where the coefficients @uj are obtained by solving the discrete problem

/Q@(@uh — Vuh) dx = 0. (15)

Note that the element shape functions used to construct the basis functions ¢; may be
different those used in the finite element approximation (2). A detailed analysis' by
Ainsworth et al. revealed the fact that the corresponding polynomial degrees should
satisfy deg¢ > deg ¢ whereby the original choice®® ¢ = ¢ ‘is not only effective, but also
the most economical’! one. The substitution of equation (14) into (15) yields a linear
algebraic system for each component of the smoothed gradient

McVuy, = Cu. (16)
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The consistent mass matrix Mc = {m;;} and the operator C = {c;;} which corresponds
to the discretized spatial derivatives are assembled from the integral terms

mij :/Q¢i¢j dx, Cij :/Q@Vgoj dx. (17)

Note that the coefficients m;; and c;; remain unchanged as long as the mesh is kept
fixed. As a consequence they need to be evaluated just once during the initialization step
and each time the grid has been (locally) adapted. If ¢ = ¢, the coefficients defined in
(17) coincide with those required to assemble the finite element matrices and hence, are
available at no additional costs. Moreover, the discrete operator C has zero row sums,
i.e., >2;¢;j = 0 as long as the sum of basis functions equals one at every point. This
amenable feature allows for an efficient edge-by-edge assembly of the right-hand side

(Cu)i =) cijluy — ;). (18)

JF

Interestingly enough, the system of algebraic equations (16) can also be obtained by ap-
plying the Galerkin approximation to the weak form of the continuous problem Vu = Vu,
where the weighting and basis functions may or may not be the same. Thus, projection
schemes of the form (14)-(15) are called variational recovery® and can be applied repeat-
edly so as to determine an approximation to a higher-order derivative. In any case, the
solution to (16) can be computed iteratively by successive approximation preconditioned
by the lumped mass matrix My = diag{m,}, where m; = 3=, m;;, as follows:

@uglmﬂ) = @ugm) + Mgl[C U — Mc@ugm)], m=0,1,2,.... (19)

Mass lumping can also be applied directly to equation (16) which yields an explicit formula
for computing the values of the projected gradient at each node

- 1
Mi i

In general, provisional slopes at edge midpoints can be interpolated from the nodal values
obtained either from (16) or (20) making use of representation (14). For linear finite
elements this corresponds to taking the mean values for each edge 7,

~ ~ @Ul + @u
Vuij = Vuh(xij) = ﬁ]

(21)
It is also feasible to project the low-order gradient Vuy into the space of non-conforming
(bi-)linear finite elements by letting ¢; € P; or ); in equations (14)-(15), respectively. As
a result, the smoothed slope values are directly available at the local degrees of freedom
which, in this case, are located in the edge midpoints.

6
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Over the years, a more accurate patch recovery technique (SPR) was introduced by
Zienkiewicz and Zhu®* which relies on the superconvergence property of the finite element
solution at some exceptional, yet a priori known, points. Let the smoothed gradient be
represented in terms of a polynomial expansion of the form

Vuy, = p(x)a, (22)

where the row vector p(x) contains all monomials of order k& at most. Here, k denotes
the degree of the finite element space, that is, & = 1 for (bi-)linear approximations.
For each vertex, say i, there exists a patch €2; of elements surrounding this node. The
multicomponent vector of coefficients a = [a1, as, ..., a,|" in the above equation can be
computed by means of a discrete least squares fit to the set of sampling points defined as

Si={j x5 € Q}. (23)
As a consequence, the quantity a can be determined by solving the linear system
My,a=f, (24)
where the local matrix M, and the right-hand side vector f are given by

M, =" p"(x;) p(x;), f=> p'(x)) Vun(x;). (25)

JES; JES;

For system (24) to have a unique solution, its rank has to be at least equal to the number
of terms in the polynomial expansion (22). In the two dimensional case this implies that
m > (k+1)(k + 2)/2. Hence, for linear (k = 1) finite elements, p(x) = [1,z,y] and the
low-order gradient is sampled at the centroids of triangles which are known to exhibit
optimal convergence rates. Except at the boundary, each node is surrounded by at least
three elements, such that m = 3 holds for all interior vertices. For boundary nodes,
Zienkiewicz and Zhu** suggest to evaluate their values from interior patches. However, it
is easy to construct meshes for which two boundary components are only separated by
one layer of elements such that no interior patches are available?®. Moreover, the choice
of the interior patch €; may not be unique for unstructured triangulations?*.

Since the advent of the superconvergent patch recovery (SPR) technique its super- and
even ultraconvergence property has been analyzed extensively in the literature®®3!:32,
This paved the way for the development of so-called polynomial preserving (PPR) ap-
proaches®. While in SPR methods a polynomial of degree k is best fitted to the consistent
gradient Vuy, directly, PPR schemes determine a k41 order accurate polynomial approx-
imation to the finite element solution in the first place and apply the gradient operator
afterwards. Recently, Zhang et al. introduced a ‘meshless’ gradient recovery method?® in
which the concept of element patches is abandoned in favor of spherical patches which
can be expanded adaptively so as to guarantee the solvability of the local subproblems.

7
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) Vuj

X X;

Figure 1: Edgewise slope-limited recovery.

The ease of implementation, generality and ability to produce quite accurate estima-
tors boosted the popularity of recovery-based techniques especially in the engineering
community. However, any of the above-mentioned strategies to predict the high-order
gradient values may fail if the solution exhibits jumps or the gradient is too steep. This is
typically the case for hyperbolic conservation laws such as the compressible Euler equa-
tions featuring strong shock waves. Recently, Korotov et al. demonstrated!? that even for
elliptic problems of the form —V - (AVu) = f standard gradient averaging may collapse
if the coefficient matrix A is not smooth enough. This can be attributed to the fact that
the averaging process extends over an unsettled number of surrounding element gradients
which may strongly vary in magnitude and even possess different signs. Thus, it is very
difficult the find admissible bounds to be imposed on such nodal gradients.

The transition to an edge based formulation makes it possible to correct the provisional
slope values subject to their constant low-order counterparts, such that inequality (12)
holds for each edge. It is also advisable to enforce the sign-preserving property (P4) of
limited average operators so as to mimic the necessary condition of a local extremum in
the discrete context. To this end, let s;; = S(Vu?;m,Vu?;“) for edge i}', so that the

corrected slope values @ujj can be computed from the predicted ones @ij as follows

max{ Vu™™ min{Vu,;, Vuf;ax}}‘ . (26)

v * P ..
vuij = Sij ij

For an interior edge, the interplay of quantities involved in this predictor-corrector edge-
wise limited recovery (ELR) procedure are illustrated in Figure 1. The generality of this
approach enables us to use arbitrary reconstruction techniques in the prediction step,
e.g., Lo-projection, SPR and PPR schemes or the recent meshless variants®® and apply
edgewise slope-limiting as a black-box post-processing tool.
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5 GRID ADAPTIVITY

In many CFD applications which can be modeled by hyperbolic conservation laws such
as the compressible Euler equations of gas dynamics, the flow pattern is governed by the
propagation and interaction of shock waves which dominate the error to a large extent.
The occurrence of local phenomena suggests adaptive mesh refinement and coarsening as
a useful tool for the cost-effective computation of highly resolved flow fields.

In adaptive solution procedures for steady state simulations, one typically starts with
a moderately coarse grid on which an intermediate solution can be computed efficiently.
Nevertheless, the mesh needs to be fine enough to capture all essential flow features in
the solution and to enable the error indicator to detect ‘imperfect’” zones. If the artificial
dissipation introduced by the numerical scheme overstrains the resolution facility of the
underlying grid any error indicator can be misleading. This may explain the reported?
failure of the Zienkiewicz-Zhu error estimator applied to shock wave computations.

Our simulation software is based on a geometric multigrid approach®, for which the
initial coarse grid is constructed by means of the advancing front algorithm implemented in
the GiD mesh generator®. The hierarchical mesh data structure is assembled by successive
subdivision of each element into four subtriangles. A common practice in compressible
flow computations is to employ nested iterations®? to speed up the convergence to steady
state. In essence, a provisional solution is computed on a coarser mesh and interpolated
to the next finer level so as to provide a reasonable initial guess.

The relative error of the density is used to monitor steady state convergence’. For
intermediate solutions, the flow solver is stopped if the solution is halfway-converged?”,
that is, if the relative error has reached the square root of the prescribed tolerance. The
(more expensive) computation of a fully converged solution is performed on the final grid.

For a given (intermediate) solution, the grid is locally refined or coarsened according
to some adaptation parameter and the whole process is repeated until (ideally) the global
relative percentage error has dropped below the prescribed tolerance 7

_ lellz,

= < Mol 27
" Wiy, =™ 0

Since neither the exact slope values nor the true gradient error are known in the above
equation, the best approximations available are utilized instead. From (6) it follows that
the global Lo-norm can be decomposed into element contributions. Suppose the relative
error is distributed equally between all cells €2, then the above inequality holds provided
the elementwise Lo-norm of the approximate gradient error satisfies

~ 1/2
IVunll2, + [1el12,]"
||

[1€]|Lo0) < Mol (28)

Here, |Q;| stands for the total number of finite elements constituting the grid. Depending
on the ratio of estimated and tolerated error, cells are marked for refinement or coarsening.
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Once the new mesh has been constructed (see below), a usable initial guess wy, is
built from the old solution uj,. In general, global Ls-projection which is quite costly
can be employed to transfer the solution between two arbitrary unstructured grids in a
conservative fashion. If simpler interpolation techniques?! or inaccurate quadrature are
utilized, the loss of mass can be rectified by means of a mass restoration post-processing!!.

The alternating solution procedure and grid adaptation continues until some ‘con-
verged’ mesh is obtained. To this end, either a maximum number of refinement levels
is prescribed a priori or some more sophisticated stopping criteria may be devised. An
economically cheap indicator can be based on the (relative) changes of the solution values
on two successive grids and terminate the simulation if the difference is sufficiently small.

Grid refinement/coarsening techniques. The local grid refinement algorithm follows the
regular red-green subdivision strategy? proposed by Bank et al. In a loop over elements,
cells which are indicated for refinement are subdivided into four triangles. This so-called
‘red’ refinement is applied iteratively so as to eliminate adjacent cells with two or three
hanging nodes. In order to restore global regularity of the triangulation the midpoints of
bisected edges are connected to the opposite vertices. Prior to the next adaptation cycle,
all edges which have been introduced due to this so-called ‘green’ refinement can/should
be removed to retain the shape regularity of the successively refined grids.

As an alternative, conforming mesh refinement for triangular/tetrahedral grids can be
accomplished by successive edge bisection?®. For each element flagged for refinement, a
new node is inserted at the midpoint of the longest edge and connected to the opposite
vertex. The bisection process continues for all adjacent triangles sharing a hanging node
with the refined element until all irregular grid points have been removed from the mesh.
However, longest-edge bisection is mainly designed to uphold some geometric properties of
the initial mesh and, thus, may not be the best comrade for our algebraic flux correction
techniques!® . For each element that needs to be refined due to accuracy reasons, the
propagation path solely depends on the mesh geometry and does not account for the local
solution behavior. In the framework of algebraic flux correction which entirely rests on an
edge-based formulation, it is advisable to follow an algebraic edge partitioning approach.
Recall that the amount of artificial dissipation that outlasts the flux limiter depends on
the interplay of internodal fluxes which are proportional to the edgewise solution difference
multiplied by some (anti-)diffusion coefficient. Therefore, it is quite expedient to bisect
the edge with the largest solution variation or the largest antidiffusive flux?*.

If the relative gradient error (28) is sufficiently small for a patch of elements, a vertex
removal procedure!! is employed to coarsen the mesh. In essence, edge-swapping is per-
formed repeatedly until the node is surrounded by just three triangles so that it can be
safely removed. In case of a boundary node, an artificial element is introduced first to
‘move’ the vertex into the interior such that the standard procedure can be applied.

In the context of AFC schemes, edge collapsing may be a promising alternative. The
basic idea is to contract edges and consolidate the two adjacent nodes whereby the position
of the new vertex should improve the algebraic properties of the discretization®?.

10
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6 NUMERICAL EXAMPLE

In order to illustrate the performance of the new algorithm let us consider a classical
benchmark?” problem for inviscid compressible flows which deals with multiple shock
reflections. A supersonic flow at M., = 2 enters a converging channel whose bottom wall
is sloped at 5°. The initial triangulation was generated from a uniform mesh consisting
of 60 x 16 quadrilaterals by dividing each element into two triangles. After three sweeps
of local mesh refinement (7, = 1%) and coarsening (e = 0.1%) governed by the MC-
limited averaging error indicator, the zone of highest grid point concentration confines
itself more and more to the vicinity of the shock as depicted in Figure 2. Moreover, the
back and forth reflection of the shock leads to the separation of five zones of essentially
uniform flow in which mesh coarsening takes place. Algebraic flux correction of TVD
type!” was employed to compute the solution, making use of the moderately diffusive
CDS-limiter applied to the characteristic variables.

‘ H exact ‘ computed ‘

o1 1.000 | 1.000
prr | 1216 | 1.216
orrr | 1463 | 1.462
orv | L747 | 1.747
ov | 2081 2.079

M; ] 2.000] 2.000
M;; | 1.821] 1.821
M | 1.649 | 1.651
My | 1.478 | 1.479
My || 1.302 | 1.304

Table 1: Converging channel: solution values.

The values of the normalized density distribution and the Mach number computed on
the finest grid (15,664 elements) reveal an amazing agreement to the exact solutions for
each of these subdomains as depicted in Table 1. The crisp resolution of the reflected
shock wave can also be observed by considering the density ‘cascade’ drawn along the
straight line y = 0.6 for all four grid levels. Interestingly enough, in the interior, the
correct solution values are already obtained on the coarsest grid which may be attributed
to the great resolution power of algebraic flux correction. However, the thin shock wave
is smeared by excessive artificial diffusion that outlasts the flux limiting process which
leads to underpredicted density values at the outflow boundary. This gap between the
numerical solution at the boundary and the exact values as well as the steepness of the
‘cascade’ monotonically improves as the grid adaptation process continues.

11
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Figure 2: Converging channel: grid adaptation.
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Figure 3: Converging channel: density cutlines at y = 0.6.

7 CONCLUSIONS AND OUTLOOK

The design of recovery-based a posteriori error indicators for hyperbolic conservation
laws has been addressed. Slope limiting techniques provide a valuable tool for the con-
struction of high-resolution gradient recovery procedures. Improved slopes can be directly
computed at edge midpoints as a limited average of the constant gradients from adjacent
triangles. These low-order slopes represent natural upper and lower bounds to be imposed
on each edge gradient. Traditional (nodal) recovery procedures, e.g., Zienkiewicz-Zhu
patch recovery or averaging projection schemes, can be used to predict high-order slopes
which may violate the geometric constraints. As a remedy, a straightforward slope limiter
is invoked edge-by-edge to correct the provisional gradient values.

The new error indicators were applied to algebraic flux correction schemes which
were successfully equipped with grid adaptivity. The highly unstructured meshes resulting
from local mesh refinement/coarsening call for fully implicit discretizations which are
unconditionally stable. The use of large (pseudo-)time steps which are especially amenable
for the simulation of steady state flows comes at the cost of an increased effort required
to solve the nonlinear equations. It could be worthwhile to employ a full approximation
scheme (FAS) or devise a Newton?® approach to tackle the strong nonlinearities.

14-19
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